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Résumé. Estimation de l’indice de queue conditionnel pour des champs
aléatoires. Nous traitons l’estimation de l’indice de queue d’une distribution à queue
lourde en présence de covariables pour les processus spatiaux en utilisant l’estimateur de
Hill. Soit

{
Zi = (Yi, xi) ∈ R× Rd, i ∈ ZN

}
un processus spatial strictement stationnaire,

nous étudions une estimation de l’indice de queues lourdes de la fonction de distribution
conditionnelle spatiale de la variable réponse Yi étant donnée la variable explicative xi.
Notre estimateur est construit sur la base de l’estimateur bien connu de Hill tout en
combinant une approche de fenêtre mobile pour capter l’information des covariables. La
consistance de l’estimateur de Hill est obtenue lorsque l’échantillon considéré est une suite
α−mélangeante.
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Abstract. We deal with the estimation of the tail index of a heavy-tailed distribution of a
spatial process using Hill’s estimator when a covariate is recorded simultaneously with the

quantity of interest. Given a stationary multidimensional spatial process
{
Zi = (Yi, xi) ∈

R × Rd, i ∈ ZN
}

, we investigate a heavy-tail index estimate of the spatial conditional

distribution function of Yi given xi. Consistency of Hill’s estimator is obtained when the
sample considered is α−mixing.
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Introduction

In this paper, we are interested in nonparametric conditional tail index estimation for
spatial data. Let ZN ;N ≥ 1, denotes the integer lattice points in the N−dimensional
Euclidean space and

(
Zi = (Yi, xi) , i ∈ ZN

)
be an R × Rd−valued measurable strictly
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stationary spatial process, with xi a fixed design, Yi has same distribution as Y defined
on the probability space (Ω, A, P ). Let Rd be a metric space associated to a metric d. We
assume that the conditions of regularly varying tail probabilities Y given x ∈ Rd is, for
all y,

P
(
|Y | > y | x

)
= y−

1
γ(x)L (y, x) , (1)

where γ(.) > 0 is an unknown positive function of the covariate x and for x fixed, L (., x)

is a slowly varying function at infinity that is, for λ > 0, lim
y→∞

L(λy,x)
L(y,x)

= 1. We also

assume that the tail balancing conditions holds. That is

lim
y→∞

P (Y > y|x)

P (|Y | > y|x)
= π0, lim

y→∞

P (Y < −y|x)

P (|Y | > y|x)
= 1− π0, (2)

where 0 < π0 ≤ 1. We are interested in nonparametric estimation of the conditional
tail-index γ(.) for spatial data. Given a sample Zi = (Yi, xi) of observations from (1) over
a rectangular domain

In = {i = (i1, ..., iN) ∈ ZN , 1 ≤ ik ≤ nk, k = 1, ..., N},

where n = (n1, ..., nN) ∈ ZN , our aim is to build a point-wise estimator of the function γ.
More precisely, for a given t ∈ Rd, we want to estimate γ(t), focusing on the case where
the design points (xi) are nonrandom. A point i = (i1, ..., iN) ∈ ZN will be referred to as

a site. We will write n → ∞ if min{nk} → ∞ and
∣∣∣njnk ∣∣∣ < C for a constant C such that

0 < C <∞ for all j, k such that 1 ≤ j, k ≤ N . In the sequel, all the limits are considered
when n → ∞. For n = (n1, ..., nN) ∈ ZN , we set n̂ = n1...nN . One can also consider
either one, two,...or all of ni, i = 1, ..., N as increasing with n̂.

Let B(t, r) be the ball centered at point t with radius r:

B(t, r) = {ω ∈ Rd, d(ω, t) ≤ r}.

Let rn,t be a positive sequence tending to zero as n goes to infinity. The proposed estimator
uses the moving window approach as in Gardes and Girard (2008) since is based on the
response variables Yi’s for which the associated covariates xi’s belong to the ball B(t, rn,t).
The proportion of such design points is thus defined by:

φ(rn,t) =
1

n̂

∑
i∈In

I {xi ∈ B(t, rn,t)},

and plays an important role in the following. It describes how the design points are
concentrated in the neighborhood of t when rn,t goes to zero. Thus, the nonrandom
number of observations (Yi, xi) in R× B(t, rn,t) are given by mn,t = n̂φ(rn,t). In order to
tackle with the subject, we recall some main notations on random fields indexed over ZN .
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In the sequel, the random fields are indexed over ZN , with N ≥ 2. We assume that ZN
is endowed with lexicographic order. For i, j ∈ ZN such that i ≤ j and i 6= j the following
indexing subsets in ZN will be considered:

S [i, j] = {l ∈ ZN , i ≤ l ≤ j}; S [i,∞[ = {l ∈ ZN , i ≤ l}.

Let
{
Z̃i(t), i ∈ S [1 ,mn,t]

}
be the selected variables Yi’s for which the associate covariates

xi’s belong to the ball B(t, rn,t), where S [1 ,mn,t] is the spatial domain where the selected
variables are observed. For convenient we treat the spatial sample as triangular arrays,
that is (Yi, xi)i∈In are written (Yi,n, xi,n) for 1 ≤ i ≤ n = n̂ (see Robinsson (2011)),
n is the sample size. We can identify each of the indices i = 1, ..., n with a location
i in the space In. More generally, let g be a continuous bijective function such that:
g : NN −→ N, (i1, ..., iN) −→ i. For instance when we have a 2-dimensional regularly-
spaced lattice (N = 2), where both the number n1 of rows and the number n2 of columns
increase with n = n1 ∗ n2, the spatial points i = (i1, i2), for i ∈ In can be indexed by
i = n2(i1 − 1) + i2. Let 1 (resp. mn,t) be the element of ZN whose all components are

equal to 1 (resp. [mn,t]). The set
{
Z̃i(t), i ∈ S [1 ,mn,t]

}
can be rewritten as follows:{

Z̃i(t), i ∈ Jmn,t = g (S [1 ,mn,t])
}
.

Let us denote by Z̃(1),mn,t ≤ Z̃(2),mn,t ≤ · · · ≤ Z̃(mn,t),mn,t the order statistics associated

to the mn,t variables Z̃i(t) of Jmn,t . Let kn,t be a sequence of elements in NN , whose all

components are equal to k̂n,t ∈ N and such that 1 ≤ kn,t ≤ mn,t. We shall assume that

kn,t is an intermediate spatial sequence, which means that k̂n,t is an intermediate sequence
of integers, and:

k̂ = k̂n,t →∞ ; k̂n,t = o (mn,t) as n→∞. (3)

The conditional tail index can be estimated by the following extended version of Hill
estimator:

γn(t) =
1

k̂n,t

k̂n,t∑
i=1

log
(
Z̃(i),mn,t

/
Z̃(k̂n,t+1),mn,t

)
(4)

We base inference on the k̂n,t top-order statistics, and as in semi-parametric estimation
of parameters of extreme events, see for example Resnick & Stărică (1995).
Consistency results of γn have been investigated. Some numerical illustrations will also
be given.
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