
De l’usage du saut de dualité pour la
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Résumé. À l’aide de certificats d’optimalité vérifiés par les solutions du Lasso il est

possible d’écarter, avant optimisation, certaines des variables non pertinentes. Ce faisant
on peut accélérer drastiquement les algorithmes résolvant le problème du lasso. Nous
proposons de nouvelles règles de pré-sélection qui reposent sur le saut de dualité. Elles
s’appuient sur la création de régions dites de sécurité, dont le diamètre tend vers zéro, sous
l’hypothèse que l’on dispose d’un algorithme convergeant pour résoudre le Lasso. Cette
propriété permet à la fois de dépister plus de variables non pertinentes, et de considérer de
plus grandes plages pour le paramètre de régularisation. Même si notre cadre englobe tout
algorithme résolvant le Lasso, nous démontrons la pertinence de notre approche pour la
méthode de descente par coordonnées, particulièrement bien adaptée pour des problèmes
de grande dimension. Des gains de temps de calcul importants sont ainsi obtenus par
rapport aux précédentes règles de pré-sélection.
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Abstract. Screening rules allow to early discard irrelevant variables from the op-
timization in Lasso problems, making solvers faster. We propose new versions of the
so-called safe rules for the Lasso. Based on duality gap considerations, our new rules
create safe test regions whose diameters converge to zero, provided that one relies on a
converging solver. This helps screening out more variables, often for a wider range of reg-
ularization parameter values. While our proposed strategy can cope with any solver, its
performance is demonstrated using a coordinate descent algorithm particularly adapted
to machine learning use cases. Significant computing time reductions are obtained with
respect to previous safe rules.
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1 Introduction and motivation

Since the mid 1990’s, high dimensional statistics has attracted considerable attention,
particularly in the context of linear regression with more explanatory variables than ob-
servations: the so-called p ą n case. In such a context, the least squares with `1 regular-
ization (called Lasso in statistics [16], or Basis Pursuit in signal processing [4]) has been
one of the most popular tools. It enjoys theoretical guarantees [1], as well as practical
benefits: it provides sparse solutions and fast convex solvers are available. This has made
the Lasso a popular method in modern data-science toolkits. Among successful fields
where it has been applied, one can mention dictionary learning [13], bio-statistics [11] and
medical imaging [10] to name a few.

Many algorithms exist to approximate Lasso solutions, but it is still an issue to ac-
celerate solvers in high dimensions. Indeed, although some other variable selection and
prediction methods exist [8], the best performing methods usually rely on the Lasso.
For non-convex approaches such as SCAD [7] or MCP [19], solving the Lasso is often a
required preliminary step.

Among possible algorithmic candidates for solving the Lasso, one can mention homo-
topy methods [14] or LARS [5] that provide the solutions for the full Lasso path, i.e., for
all possible choices of tuning parameter λ. More recently, particularly when p ą n, coor-
dinate descent approaches [9] have proved to be among the best methods to tackle large
scale problems.

Following the seminal work by [6], screening techniques have emerged as a way to
exploit the known sparsity of the solution by discarding features prior to starting a Lasso
solver. Such techniques are coined safe rules when they screen out coefficients guaranteed
to be zero in the targeted optimal solution (cf. [18] for a nice survey). Zeroing those
coefficients allows to focus more precisely on the non-zero ones (likely to represent signal)
and helps reducing the computational burden. Other alternatives have tried to screen
the Lasso relaxing the “safety”. Potentially, some variables are wrongly disregarded and
post-processing is needed to recover them. This is for instance the strategy adopted for
the strong rules [17].

The original safe rules operate as follows: for a fixed tuning parameter λ, and before
launching any solver, test whether a coordinate can be zeroed or not (equivalently if
the corresponding variable can be disregarded or not). Note that the test is performed
according to a safe region, i.e., a region containing a dual optimal solution of the Lasso
problem. Here, the screening is performed only once prior any optimization iteration.

We aim at improving the screening by interlacing it throughout the optimization
algorithm itself: though screening might be useless at the beginning, it might become
more and more efficient as the algorithm proceeds towards the optimal solution. We call
these strategies dynamic safe rules following the terminology introduced in [3, 2].

Based on convex optimization arguments, we leverage duality gap computations to
propose a simple dynamic safe rule. We call it GAP SAFE rule.
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2 Lasso: model and notation

Our observation vector is y P Rn and the design matrix X “ rx1, ¨ ¨ ¨ , xps P Rnˆp has p
explanatory variables column-wise. We aim at approximating y as a linear combination
of few variables xj’s, hence expressing y as Xβ where β P Rp is a sparse vector.

For such a task, we consider the Lasso whose definition is as follows. For a tuning
parameter λ ą 0, which controls the trade-off between data-fit versus the sparsity of the
solutions, a Lasso estimator β̂pλq is any solution of the primal optimization problem

β̂pλq P arg min
βPRp

1

2
‖Xβ ´ y‖2

2 ` λ ‖β‖1
looooooooooooomooooooooooooon

“Pλpβq

. (1)

Denoting ∆X “
 

θ P Rn :
∣∣xJj θ∣∣ ď 1, @j P rps

(

the dual feasible set, a dual formulation
of the Lasso reads (see for instance [12] or [18]):

θ̂pλq “ arg max
θP∆XĂRn

1

2
‖y‖2

2 ´
λ2

2

∥∥∥θ ´ y

λ

∥∥∥2

2
looooooooooooomooooooooooooon

“Dλpθq

. (2)

In particular, note that the dual solution θ̂pλq is unique, contrarily to the primal β̂pλq.

2.1 Sphere tests

Following previous work on safe rules, we call sphere tests, tests relying on balls as safe
regions. For a sphere test, one chooses a ball containing θ̂pλq with center c and radius r,
i.e., C “ Bpc, rq. The corresponding safe test is defined as follows:

If |xJj c| ` r}xj} ă 1, then β̂
pλq
j “ 0. (3)

Note that for a fixed center, the smaller the radius, the better the safe screening strategy.
So the main goal of safe rules is to find sphere with a small radius to eliminate as many
variables xj as possible.

2.2 Dynamic safe rules

For approximating a solution β̂pλq of the Lasso primal problem Pλ, iterative algorithms are
commonly used. We denote βk P Rp the current estimate after k iterations of any iterative
algorithm. Dynamic safe rules aim at discovering safe regions that become narrower as
k increases. One first needs a dual feasible points: θk P ∆X . Following [6] (see also [3]),
this can be achieved by a simple transformation of the current residuals ρk “ y ´ Xβk,
defining θk as

θk “ αkρk, where αk “ min
”

max

ˆ

yJρk

λ ‖ρk‖2 ,
´1

‖XJρk‖8

˙

,
1

‖XJρk‖8

ı

. (4)
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Such dual feasible θk is proportional to ρk, and is the closest point (for the norm } ¨ }) to
y{λ in ∆X with such a property. A reason for choosing this dual point is that the dual
optimal solution θ̂pλq is the projection of y{λ on the dual feasible set ∆X , and the optimal
θ̂pλq is proportional to y ´Xβ̂pλq .

Our dynamic safe rule consists in choosing as center c “ θk in (3). One can prove
that a radius equals to r “ 1

λ

a

2 pPλpβkq ´Dλ pθkqq leads to a safe rule. Note that
Pλpβkq ´Dλ pθkq is simply the duality gap obtained for primal βk and dual θk.

Remark 1. One can refine the safe sphere rule to a safe dome rule. Unfortunately details
are too cumbersome to be given here, cf. [18] for more details.

Remark 2. Note that if limkÑ`8 βk “ β̂pλq (convergence of the primal) then we can show
that limkÑ`8 θk “ θ̂pλq (convergence of the dual), and that the convergence of the primal
is unaltered by any safe rule. Screening out unnecessary coefficients can only decrease the
distance to a primal solution.

3 Experiments

We implemented standard screening rules as well as ours based on the coordinate descent
in Scikit-learn [15]. The code is written in Python and Cython to generate low level C
code, offering high performance. A low level language is necessary for this algorithm to
scale. In practice, we perform the dynamic screening tests every 10 passes through the
entire (active) variables. Iterations are stopped when the duality gap is smaller than the
target accuracy.

Figure 1,(a) presents the proportion of variables screened by several safe rules on the
standard Leukemia dataset. The screening proportion is presented as a function of the
number of iterations K in the coordinate descent implementation of Scikit-Learn [15]. As
the SAFE screening rule of [6] is not dynamic, for a given λ the proportion of screened
variables does not depend on K. The rules of [3] are more efficient on this dataset but
they do not benefit much from the dynamic framework. Our proposed GAP SAFE tests
screen much more variables, especially when the tuning parameter λ gets small, which is
particularly relevant in practice. Moreover, even for very small λ’s (notice the logarithmic
scale) where no variable is screened at the beginning of the optimization procedure, the
GAP SAFE rules manage to screen more variables, especially when K increases. Finally,
the figure demonstrates that the GAP SAFE dome test only brings marginal improvement
over the sphere.

The main interest of variable screening is to reduce computation costs. Indeed, the
time to compute the screening itself should not be larger than the gains given by the
screening. Hence, we compared the time needed to compute the whole Lasso path to a
prescribed accuracy for different safe rules. Figures 1(b) present results on the dense,
small scale, Leukemia dataset.
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(a) Screening proportion as a function of λ and
the number of iterations K.
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Figure 1: Leukemia dataset (dense data: n “ 72, p “ 7129).
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