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Résumé. Nous proposons de construire des composantes permettant de régulariser un Mo-
dèle Linéaire Généralisé (GLM) multivarié. Un ensemble de réponses aléatoires Y est supposé
dépendre, via un GLM, d’un ensemble X de variables explicatives, ainsi que d’un ensemble T
de covariables additionnelles. X est partitionné en R blocs X1, ..., XR, conceptuellement ho-
mogènes, considérés comme autant de thèmes explicatifs. Les variables dans chaque Xr sont
supposées nombreuses et redondantes. Il est donc nécessaire de régulariser la régression linéaire
généralisée dans chaque thème. À l’inverse, les variables de T sont supposées peu nombreuses
et sélectionnées de sorte à n’exiger aucune régularisation. On procède à la régularisation en
cherchant dans chaque thème un nombre approprié de composantes orthogonales permettant de
modéliser Y tout en extrayant une information structurelle pertinente dans chaque thème. Nous
proposons un critère très général mesurant la pertinence structurelle d’une composante dans un
thème, que nous introduisons dans l’algorithme des scores de Fisher d’estimation du modèle. La
méthode, nommée THEME-SCGLR, est testée sur simulations et appliquée à la modélisation
de l’abondance des espèces d’arbres dans la forêt tropicale du bassin du Congo.

Mots-clés. Modèles à composantes, GLM multivarié, Pertinence structurelle, Régularisa-
tion, SCGLR.

Abstract. We address component-based regularisation of a Multivariate Generalized Linear
Model. A set of random responses Y is assumed to depend, through a GLM, on a set X of
explanatory variables, as well as on a set T of additional covariates. X is partitioned into R
conceptually homogenous blocks X1, . . . , XR, viewed as explanatory themes. Variables in each
Xr are assumed many and redundant. Thus, generalised linear regression demands regularisa-
tion with respect to each Xr. By contrast, variables in T are assumed selected so as to demand
no regularisation. Regularisation is performed searching each Xr for an appropriate number of
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orthogonal components that both contribute to model Y and capture relevant structural informa-
tion in Xr. We propose a very general criterion to measure structural relevance of a component
in a block, and show how to take structural relevance into account within a Fisher’s scoring-
type algorithm in order to estimate the model. The method, named THEME-SCGLR, is tested
on simulated data and applied to model the abundancies of tree species in the Congo bassin rain
forest.

Keywords. Component-Models, Multivariate GLM, Structural Relevance, Regularisation,
SCGLR.

1 Data, Model and Problem
A set of q random responses Y = {y1, . . . , yq} is assumed to depend on p numeric regres-

sors, partitioned into R blocks X1, . . . , XR, with : ∀r, Xr = {x1r, . . . , xprr }, plus one block T
of additional covariates. Let X := [X1, . . . , XR]. X and T may include the indicator variables
of nominal explanatory variables. Every Xr may contain several unknown structurally relevant
dimensions important to predict Y, how many we do not know. Variables in T are assumed to
have been selected so as to preclude redundancy, while variables in the Xr’s have not : T ga-
thers all explanatory variables to be kept as such in the model, whereas dimension reduction
and regularisation are needed in the Xr’s. Each Xr is thus to be searched for an appropriate
number of orthogonal components that both capture relevant structural information in Xr and
contribute to model Y .

Each yk is modelled through a GLM (as defined in [1]) taking X ∪ T as regressor set.
Moreover, the y’s are assumed independent conditional on X ∪ T . All variables are measured
on the same n units.

There has been attempts to deal with the particular case of R = 1 with T empty. In the
univariate situation Y = {y}, Bastien et al. [2] combined generalised linear regression with
univariate Partial Least Squares. In the multiple-y context, Bry [3] proposed an extension to
GLM of Thematic Component Analysis. In our view, both methods lack consistency in estima-
tion weightings. Still in the univariate situation, Marx [4] proposed a more consistent Iteratively
Reweighted Partial Least Squares estimation. More recently, Bry et al. [5] extended the work
by Marx [4] with a technique named Supervised Component-based Generalised Linear Regres-
sion (SCGLR). The basic principle of SCGLR is to replace the weighted least squares step of
the Fisher’s Scoring Algorithm (FSA) with an extended Partial Least Squares step. That way,
component-based regularisation was introduced into GLM estimation. In this work, we propose
to extend SCGLR by :

1. Introducing additional covariates.
2. Extending the notion of structural relevance of a component, so as to track various kinds

of structures.
3. Extending SCGLR to the multiple-explanatory-block situation.
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Let us use the following notations :
• ΠM

E := orthogonal projector on space E, with respect to some metric M .
• 〈X〉 := space spanned by the column-vectors of X.

2 Adapting the FSA to Estimate a Multivariate GLM with
Partially Common Predictor

Let us assume only one blockX . Searching for common components inX to explain several
y’s, we first have to adapt the classical FSA to predictors colinear in their X-parts :

∀k = 1, . . . , q : ηk = Xγku+ Tδk

For identification, we impose u′Au = 1, where A may be any symetric definite positive matrix.
In view of the conditional independence assumption, and independence of units :

l(y|η) =
n∏
i=1

q∏
k=1

lk(yki|ηki)

Due to the product γku, the linearized model on each step of the deduced FSA is not linear and
estimation has thus to be done through an alternated least squares step. Denoting zk the classical
working variables on each FSA’s step, the solution of the following program is sought :

Q : min
f∈〈X〉

∑
k

‖zk − ΠWk

〈f,T 〉zk‖
2
Wk
,

which is equivalent to program Q′ :

Q′ : max
u′Au=1

ψ(u) , where ψ(u) =
∑
k

‖zk‖2Wk
cos2Wk

(zk , 〈Xu, T 〉) (1)

In order to later deal with multiple Xr’s, we have yet to replace Q′ by another equivalent pro-
gram :

Q′′ : max
∀r, u′rArur=1

ψ(u1, . . . , uR)

where A1, . . . , AR are any given symetric definite positive matrices, and ψ(u1, . . . , uR) is equal
to : ∑

k

‖zk‖2Wk
cos2Wk

(zk , 〈X1u1, . . . , XRuR, T 〉) (2)

ψ(u1, . . . , uR) is a goodness-of-fit measure, now to be combined with some structural relevance
measure to get regularisation.
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3 Structural Relevance
Consider a given weight matrix W , e.g. W = n−1In, reflecting the a priori importance of

units. Let X be an n × p variable-block endowed with a p × p metric matrix M . Component
f = Xu is constrained by : ‖u‖2M−1 = 1 (M−1 will thus be our choice of the aforementioned
matrix A). We may consider various measures of structural relevance, according to the type
of structure we want f to align with. Among them is the variable powered inertia, defined as
follows.

We impose ‖f‖2W = 1 through M = (X ′WX)−1 . Let l ≥ 1.
For a block X consisting of p standardised numeric variables xj :

φ(u) =

(
p∑
j=1

cos2l(Xu, xj)

) 1
l

=

(
p∑
j=1

(u′X ′Wxjxj
′
WXu)l

) 1
l

For l = 1, we get the part of X’s variance captured by component f .
More generally, tuning parameter l allows to draw components towards more (greater l) or less
(smaller l) local variable bundles. Fig. 1 graphs φl(v) in polar coordinates ( z(θ) = φl(eiθ)eiθ ; θ ∈
[0, 2π] ) for various values of l in the elementary case of 4 coplanar variables x. One can see
how the value of l tunes the locality of bundles considered.

For a block X consisting of p categorical variables Xj , each of which is coded through the set
of its centred indicator variables (less one to avoid singularity of Xj′WXj), we take :

φ(u) =

(
p∑
j=1

cos2l(Xu , 〈Xj〉)

) 1
l

=

(
p∑
j=1

〈Xu|ΠW
XjXu〉lW

) 1
l

.

4 THEME-SCGLR
We shall first consider the simpler case of a single explanatory block (R = 1), and then turn

to the general case.

4.1 Dealing with a Single Explanatory Block
In order to regularise the regression corresponding to program Q′ at each step of the FSA,

we consider program :
R : max

u′M−1u=1
ψ(u)1−sφs(u) (3)

where ψ(u) is given by (1) and s is a parameter tuning the relative importance of the structural
relevance with respect to the goodness of fit. The product-form of the criterion is a straightfor-
ward way to make the solution insensitive to “size effects” of φ(u) and ψ(u).
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FIGURE 1 – Polar representation of the variable powered inertia according to the value of l.

Rank 1 component : is obtained by solving program (3) instead of performing the current step
of the modified FSA given by (1). We developped an algorithm to maximise, at least locally,
any criterion on the unit-sphere : the iterated normed gradient algorithm.

Rank h > 1 component : Let F h := {f 1, . . . , fh} be the set of the first h components. An
extra component fh+1 must best complement the existing ones plus T , i.e. T h := F h ∪ T .
So fh+1 must be calculated using T h as a block of extra-covariates. Moreover, we must impose
that fh+1 be orthogonal to F h, i.e. :

F h′Wfh+1 = 0 (4)

4.2 Dealing with R > 1 Explanatory Blocks
Rank 1 component : Estimating the model in section 2 led to currently solving program Q′′.
Introducing structural relevance in it, we will now solve :

R′′ : max
∀r, u′rM

−1
r ur=1

ψ(u1, . . . , uR)1−s
R∏
r=1

φs(ur) (5)

where ψ(u1, . . . , uR) is given by (2). (5) can be solved by iteratively solving :

Rr : max
u′rM

−1
r ur=1

ψ(ur)
(1−s)φs(ur)

where ψ(ur) is calculated with T̃r = T ∪ {fs; s 6= r}.

Rank h > 1 component : Suppose we want Hr components in Xr. ∀r ∈ {1, . . . , R},∀l < Hr,
let F l

r := {fhr ; h = 1, . . . , l}. Component fh+1
r must best complement the existing components
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(i.e. rank < h + 1 ones in Xr and all components of all other blocks) plus T , i.e. : T hr :=
F h
r ∪s 6=r F hs

s ∪T . Informally, the algorithm consists in currently calculating all Hr components
in Xr, as done in section 4.1 taking T ∪s 6=r FHs

s as extra-covariates, and then loop on r until
overall convergence of the component-system is reached.

4.3 More material to present
Previous sections show the main ideas of THEME-SCGLR, but we shall also discuss :

- how to deal with mixed-type covariates, by adjusting metric M ,

- how to get regression coefficients on the original variables from regression coefficients
on the components,

- the principles we used for model assessment and model selection.

Finally, we will apply THEME-SCGLR on both simulated data and a real data set of abun-
dancies of tree species in the Congo Bassin rain forest.

5 Conclusion
THEME-SCGLR is a powerful tradeoff between multivariate GLM estimation (which can-

not afford many and redundant explanatory variables) and PCA-like methods (which take no
explanatory model into account). Given a thematic model of the phenomenon under attention,
it provides robust predictive models based on interpretable components. It also allows, through
the exploration facilities it offers, to gradually refine the design of the model.
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