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Résumé. Dans le cadre de la modélisation par processus Gaussiens, nous nous pen-
chons sur un problème d’estimation d’ensemble d’excursion pour une fonction chère à
évaluer. L’espérance de Vorob’ev, récemment revisitée dans ce contexte, donne une esti-
mation de l’ensemble d’excursion sous une contrainte de volume égal au volume d’excursion
moyen, mais ne permet pas directement de tirer des conclusions en termes d’ensemble de
confiance. L’espérance de Vorob’ev est en effet un ensemble de niveau particulier de
la probabilité de couverture, c’est à dire d’une probabilité marginale de dépassement
de seuil pour le champ Gaussien sous-jacent. Il a été montré récemment en se concen-
trant plus spécifiquement sur les probabilités jointes d’excursion en plusieurs points qu’il
était possible de construire des ensembles de confiance dans le cas des champs Gaussiens
Markoviens. De tels ensembles de confiance sont définis comme ensembles de volume max-
imal parmi les ensembles de probabilité donnée d’être contenu dans l’ensemble d’excursion.
Nous étendons ici cette approche au cas non-Markovien et explorons plusieurs pistes pour
améliorer le calcul de la probabilité jointe d’excursion en plusieurs points. De plus, nous
appliquons cette méthode pour obtenir une estimation conservative de l’ensemble des
configurations sûres dans le cadre d’un cas test IRSN en sûreté-criticité nucléaire. Nous
introduisons finalement une stratégie de réduction d’incertitude pour l’estimation conser-
vative séquentielle d’un ensemble d’excursion.

Mots-clés. Problèmes inverses, Méthodes bayésiennes, Plan dexpérience, Études de
cas

Abstract. In the framework of Gaussian random field modeling, we focus on the
problem of estimating the excursion set of a function under a limited evaluation budget.
The recently revisited Vorob’ev expectation gives a practical estimate with the property of
preserving the expected volume of excursion, however it is not directly possible to provide
interpretations in terms of confidence regions. The Vorob’ev expectation is, in fact, a
specific level set of the coverage probability function, the marginal probability of excursion
of the underlying posterior Gaussian field. By shifting the focus on the joint probability of
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excursion it was recently shown that it is possible to compute a joint confidence statement
on the estimate of the excursion set in the case of a Gauss Markov random field. This
estimate is computed as the largest set among the ones that have probability at least α of
being inside the excursion set. Here we extend this approach to the non-Markovian case
and we investigate different ways to improve the approximation of the joint probability
of excursion. Moreover we apply this method to provide conservative estimates of safe
configurations for a nuclear criticality safety test case. Finally we introduce an uncertainty
reduction strategy for sequentially learning conservative estimates.

Keywords. Inverse problems, Bayesian methods, Experimental design, Case studies

1 Introduction

In this work we present a set estimation approach for inversion problems of an expensive
to evaluate objective function. In particular we are interested in estimating the set of
configurations where a given response is above a certain threshold.

We consider a continuous objective function f : D ⊂ Rd → R and, given a prescribed
threshold T ∈ R, we are interested in the excursion set

Γ ? = f−1([T,+∞)) = {x ∈ D : f(x) ≥ T}.

In reliability engineering, the set Γ ? often represents the set of unsafe configurations
of a system depending on d parameters. For example, in the test case provided by the
department of nuclear criticality safety of the French Institute of Nuclear Safety which is
presented in the following section, the set of unsafe configurations is represented by the
excursion set of the function keffective above the level T = 1.

Following the Gaussian random field (GRF) modeling approach (see e.g. [6]), the
function f is considered as a realization of Z = (Zx)x∈D, a GRF with continuous sample
paths whose mean function and covariance kernel are denoted with m and k respectively.
The excursion set Γ ? is then regarded as a realization of the random closed set

Γ = {x ∈ D : Zx ≥ T}.

We assume that the function has been evaluated at few points Xn = {x1, . . . , xn} and we
consider the posterior field (Zx)x∈D | An where An := (Zx1 = f(x1), . . . , Zxn = f(xn)).
We denote with mn and kn the posterior mean function and covariance kernel respectively.

The field (Zx)x∈D | An defines a posterior distribution for the random closed set
Γ | An. In the theory of random closed sets several definitions of expectation are available
to summarize this distribution (see e.g. [5]), in particular in [2] the Vorob’ev expectation
was revisited in the framework of set estimation and uncertainty quantification under
Gaussian random field priors. This expectation relies on the coverage probability function

pn : x ∈ D → pn(x) = Pn(x ∈ Γ ) := P (x ∈ Γ | An) ∈ [0, 1]
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which gives the point-wise probability of excursion. As Z is a Gaussian field, the coverage

probability function can be computed analytically as pn(x) = Pn(Zx ≥ T ) = Φ
(
mn(x)−T
kn(x,x)

)
.

The level sets of pn naturally define quantiles of Γ | An, called Vorob’ev quantiles,
Qρ = {x : pn(x) ≥ ρ}. The Vorob’ev expectation is the specific level set Qρ∗ such that
|Qρ∗| = E[|Γ |], where |·| is the Lebesgue measure of the set.

The Vorob’ev quantiles involve marginal confidence statements on the probability
of excursion, thus they do not provide a joint confidence statement on the probability
of observing a specific set. In particular it is not possible to obtain a set where with
probability α the response exceeds the threshold at each of its locations.

2 Conservative estimates

In order to obtain a joint type of confidence statements the concept of conservative esti-
mates was recently introduced in [1], that is a set

ET,α ∈ arg max
E
{|E| : Pn(E ⊂ {Zx ≥ T}) ≥ α}.

In general the set of maximum volume is not unique however, in practice, the optimiza-
tion is conducted over parametric families and a unique optimum is reached. In this work
we restrict the optimization to a one dimensional parametric family for E, hence in the
following, with an abuse of notation, we denote with ET,α the set that realizes the maxi-
mum. With such a remark in mind then, ET,α is the largest set where, with probability
α, the threshold T is exceeded at each of its locations.

In reliability engineering ET,α is the set that with probability α consists of only con-
figurations where the response is above a certain level, which are often dangerous configu-
rations. Frequently however the engineers are interested in the set that, with probability
α, contains all potentially dangerous zones to avoid or, reciprocally, in the set that, with
probability α, contains only safe configurations. Those sets can be formalized as the
conservative estimate for the lower excursion and the credible regions.

We define conservative estimate for the lower excursion the set

E−T,α = arg max
E
{|E| : Pn(E ⊂ {Zx < T}) ≥ α}.

E−T,α is the largest set such that, with probability α, the response is below the threshold
T at each of its locations.

A closely related concept is the set of credible regions, the complement of E−T,α

CT,α = (E−T,α)C =
(

arg max
E
{|E| : Pn(E ⊂ {Zx < T}) ≥ α}

)C
.

This is the set that contains, with probability α, all possible excursions greater or equal
to T .
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The estimate of Pn(E ⊂ {Zx ≥ T}) is obtained by relying on a fast Monte Carlo
algorithm to approximate a truncated multivariate normal which generalizes the algorithm
introduced in [1].

The maximization of the volume is computed over the parametric family of Vorob’ev
quantiles. While this family presents nice properties, notably it is a family of nested sets,
further families could be explored to obtain a better approximation of the set with largest
volume.

3 Test case

In this section we present a real-life application that was provided by the department
of nuclear criticality safety of the French Institute of Nuclear Safety (IRSN, Institut de
Radioprotection et de Sûreté Nucléaire).

The safety of a fissile material storage facility is measured with the neutron multiplica-
tion factor keffective. A value of keffective ≥ 1 denotes an increasing neutron production, thus
an unsafe configuration, while keffective < 1 denotes a safe configuration. In the present
case study we consider the safety of a storage facility containing cylinders of fissile mate-
rial of diameter l with total mass mtot. The function keffective for this type of configurations
is modeled as

keffective : (l,mtot) ∈ R2 −→ R.

The parameters are expressed in cm and g respectively and they are constrained into the
intervals l ∈ [7.8, 24],mtot ∈ [350, 35000]. Here both variables are rescaled to the unit
interval [0, 1]. The excursion set of interest is

Γ ? = {x = (l,mtot) ∈ [0, 1]2 : keffective(l,mtot) < 1}.

Figure 1 shows a benchmark estimate of the excursion set obtained by evaluating the
function on a grid, the region of interest is plotted in white.

In the setting previously introduced we define a prior GRF Z with unknown constant
mean function and a tensor product Matérn (ν = 5/2) kernel; from 15 observations
(xi, keffective(xi))i=1,...,15 we estimate the parameters of the model by Maximum Likelihood
and we compute the posterior GRF Z | (Zxi

= keffective(xi))i=1,...,15. The excursion Γ ?

can be regarded as a realization of the random closed set Γ | (Zxi
= keffective(xi))i=1,...,15

and the Vorob’ev expectation is an estimator for Γ ?. Here, however, we are interested
in a robust estimate of Γ ? so we consider the conservative estimate E−T=1,α=0.95. Figure 2
shows the conservative estimate of the safe regions compared with the contour line of the
true excursion region and with the countour line of the Vorob’ev quantile at 95%.

Several approximations are involved in the computation of the conservative estimates:
the GRF assumption, the chosen model and the covariance parameters estimation. The

4



Figure 1: keffective evaluated on a regular grid
on [0, 1]2. In blue the contour line keffective =
1, the true safe region is the light gray area.

Figure 2: Safe region estimate at 95% (clear
region) based on evaluations of keffective at
15 locations (black triangles) compared with
Vorob’ev quantile at 95% (red line)

conservative estimate approach is intrinsically safer than the Vorob’ev expectation ap-
proach because it considers the joint probability of excursion, however the approxima-
tions mentioned above still affect the estimate. Those effects could be mitigated with a
worst case/full Bayesian approach on the model parameters or also with sequential design
strategies to adaptively reduce both model and set estimation uncertainties. In our talk
we focus on the latter point.

4 Sequential uncertainty reduction strategies for con-

servative estimates

The uncertainty associated with GRF models has been measured and used with favorable
outcomes in the design and analysis of computer experiments [7] and in global optimiza-
tion [4]. Recently (see e.g. [3] and references therein) this measure has been used in
inversion problems, in particular fast Stepwise Uncertainty Reduction (SUR) strategies
have been implemented for the problem of estimating excursion regions. A SUR strategy
aims at constructing a sequence of evaluation points of f such that the uncertainty on
a given quantity of interest is reduced. In [3] (section 4.2) a SUR strategy for reducing
the uncertainty on the excursion set estimate was defined with the uncertainty function
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Hn(An) = Varn(Γ ) = E (|Γ∆Qρ∗| | An), where Qρ∗ is the Vorob’ev expectation of Γ | An,
A∆B denotes the symmetric difference between the sets A, B and |·| is the Lebesgue mea-
sure of the set. Here we adapt this SUR strategy to conservative estimates and we propose
a new ad hoc heuristic strategy.
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