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Résumé. Dans ce travail, nous considérons le problème asymptotique dans l’analyse
spectrale des champs aléatoires stationnaires. Nous proposons des conditions qui sont
facilement vérifiées pour différentes classes de champs aléatoires non linéaires pour obtenir
la consistance et la normalité asymptotique de l’estimateur de la densité spectrale. La
distribution asymptotique de la déviation maximale de l’estimateur de densité spectrale
est aussi dérivée.

Mots-clés. Processus non linéaire spatial, densité spectrale, mesure de dépendance
physique.

Abstract. In this paper, we consider the asymptotic problem in spectral analysis of
stationary random fields. We impose conditions which are easily verifiable for a variety of
nonlinear random fields to obtain the consistency and the asymptotic normality of spectral
density estimates. Asymptotic distribution of maximum deviations of the spectral density
estimates is also derived.

Keywords. Spatial nonlinear process, spectral density, physical dependence measure.

1 Introduction

Spatial data arise in various area of research, including astronomy, epidemiology, image
analysis. Important development in area of spatial statistics are found in Cressie (1991),
Guyon (1995) and the references therein. Spectral analysis of stationary processes is
a powerful tool for analyzing spatial data sets on a grid see Guyon (1995), Rosenblatt
(1985) among other. However, the asymptotic results are certainly needed in the related
statistical inference in the frequency domain, such as hypothesis testing and the construc-
tion of confidence intervals. So, to analyze the properties of any spectral estimator it is
important to quantify the strength of dependence of the random fields. This can be done
using cumulant summability conditions, moment and mixing conditions, for example,
Rosenblatt(1985) considered strong mixing random field and assumed the summability
condition of cumulants up to the eighth order, etc. In the earlier literature, the assump-
tion of linearity of the Random fields is prevalent (see Guyon (1995), Rosenblatt (1985)).
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There has been a recent surge of interest in nonlinear random fields see Bibi and Ki-
mouche (2014) and the references therein. It seems that a systematic asymptotic spectral
theory for such processes is lacking. The goal of this paper is to establish an asymptotic
spectral theory for spatial processes under very mild and natural conditions, thus sub-
stantially extending the applicability of spectral analysis to nonlinear and/or non–strong
mixing spatial processes. Here we adopt the setting of physical dependence measure (p-
stability) introduced in Wu (2005) in dimension 1 and extended by El Machkouri et al.
(2013) to general dimension.

The paper is organized as follows. In section 2, we extend the concept of physical
dependence measure used in the time series literature to spatial processes. In section 3
we present the estimate of spectral density. The main results are given in Section 4.

The following notations are used throughout this paper. Let l = (l1, ..., ld) and k =
(k1, ..., kd) two vectors of non negative integers belonging to Zd, we have l.k =l1k1 +

... + ldkd, l� k = (l1k1, ..., ldkd) ,
l
k

= ( l1
k1
, ..., ld

kd
) if k1, ..., kd 6= 0, k̂ =

∏d
i=1 ki and |l| =

(|l1| , ..., |ld|). Further, for a column vector a = (a1, ..., ad) ∈ Rd let |a|p =
(∑d

j=1 a
p
j

)1/p
(i.e.|a|2 = |a|). Also, let 0 = (0, ..., 0) and 1 = (1, ..., 1) denote the d−dimensional vectors
of zeros and ones. Define the partial order l � k if li ≤ ki (i.e. for l ≺ k if li < ki) for
each i, Γ [n] =

{
x ∈ Zd,0 � x � n

}
and R (l,k) =

{
x ∈ Zd, l � x � k

}
.

2 The Dependence measure

Let Zd denote the integer lattice in d−dimensional Euclidean space, where d ≥ 1 and let
In be a subset of Zd which is the observation region of the data, i.e. the location at which
the data is collected. We assume that the random field (X(t))t∈Zd has the form

X(t) = G(ε(t− h); h ∈ Zd), t ∈ Zd. (1)

where (ε(t))t∈Zd are independent and identically distributed random fields and G is a
measurable function. In the one-dimensional case (d = 1), (1) includes linear as well as
many widely used nonlinear time series models as special cases in Shao and Wu (2007),
Liu and Wu (2010).

The physical dependence measure should be seen as a measure of the dependence
of the function G defined in (1). It turns out that, with the dependence measure, the
consistency and asymptotic normality can be established in a very elegant and natural
way.

Let τ : Z→ Zd be a bijection and for any k ∈ Z and l ∈ Z,=k = σ (ε(τ (l)); l ≤ k) .
Let (ε′ (t))t∈Zd be an i.i.d copy of (ε (t))t∈Zd . For a set T ⊂ Z, let

εT (t) =

{
ε′ (τ (l)) if t =τ (l) , l ∈ T
ε (t) if t 6=τ (l) , l ∈ T .
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Definition 2.1 For p ∈]0,+∞] and T ⊂ Z we define the physical dependence measure
by

δp (T, t) = ‖G(ε(t− h))−G(εT (t− h))‖p ; h ∈ Zd (2)

Remark 2.1 - If T = {0} , then (2) is defined as

δp (t) = ‖G(ε(t− h))−G(ε∗(t− h))‖p ; h ∈ Zd (3)

where

ε∗ (t) =

{
ε (t) if t 6= 0,
ε′ (0) if t = 0.

- If τ (min {l : l ∈ T}) � t then δp (T, t) = 0.

Definition 2.2 We say that the random field (X(t))t∈Zd defined in (1) is p-stable if

∆p :=
∑
t∈Zd

δp (t) <∞

As an illustration, we give some examples of p-stable random fields.

Example 2.1 (Linear random fields) Let (ε(t))t∈Zd be i.i.d random field with ε(0) ∈ Lp
for some p ≥ 1. When

∑
i∈Zd |ai| < ∞, one can define in Lp the centered linear random

field X (t) =
∑

i�0 aiε (t− i) , t ∈ Zd. Moreover, for p > 2, for any t ∈ Zd δp (t) =
|at| ‖ε (0)− ε′ (0)‖p . So, X (t) is p-stable if and only if∑

i∈Zd

|ai| <∞.

Example 2.2 Let (ε(t))t∈Zd be i.i.d random fields and consider the recursion

X(t) = G (X(t− 1), ε(t)) (4)

where G is a measurable function. The framework (4) is quite general, and it includes
many popular nonlinear random fields such as autoregressive–autoregressive condition-
ally heteroskedastic random fields, amplitude-dependent exponential autoregressive random
fields and signed volatility models. Assume that there exist p > 0 and x0 ∈ R such that

G (x0, ε(0)) ∈ Lp and E
(
Lpε(0)

)
< 1, where Lε(0) = supx 6=x′

|G(x,ε(0))−G(x′,ε(0))|
|x−x′| . Then X(t)

has a unique stationary solution of the form (1), and δp (n) = O(ρn̂) for some ρ ∈ (0, 1).
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3 The estimate

Let (X(t))t∈Zd be a stationary random field with mean 0 and finite covariances C(h) :=
Cov {X(t)X(t + h)} . Assume that the covariances are absolutely summable, then the
spectral density function

f(λ) =
1

(2π)d

∑
h∈Zd

C(h)e−ih.λ, λ ∈ π (5)

exists and is continuous and finite (i.e., π = [−π, π[× ...× [−π, π[, d−times).
Given the observations {X(1), ..., X (n) }, the observation region In mentioned in the

previous section will be the rectangular region of Zd defined by
In :=

{
t ∈ Zd : 1 ≤ ti ≤ ni, i = 1, ..., d

}
, the number of sites in In is denoted as n̂=

∏d
i=1 ni.

Consider the lag-window estimate

fn(λ) =
1

(2π)d

∑
h∈R(1−n,n−1)

Ĉ(h)K(
h

Bn

)e−ih.λ, (6)

where

Ĉ(h) =
1

n̂

∑
t∈R(|h|+1,n)

X (t)X (t− |h|) , |h| ≺ n− 1, (7)

be the estimated covariances, bn = B−1n is the bandwidth satisfying n�bn −→∞, bn −→ 0
as n −→∞ and the kernel function K satisfied the following assumption

Assumption 1
K is an even, bounded, continuous and absolutely integrable function with limu→0K(u) =

K(0) = 1,
∫
Rd K

2(u)du =: κ <∞.
For asymptotic results in this paper, we consider the following assumption on the

Kernel K when all those assumptions are mild, and they are satisfied for Parzen, triangle,
Tukey, and many other commonly used windows.

Assumption 2

a) lim w→0ŵ
∑

h∈Zd K2(h � w) =
∫
Rd K

2(u)du =: κ < ∞ and its Fourier transform

K̂(x) =
∫
Rd K(u)eix.udu satisfies

∫
Rd

∣∣∣K̂(x)
∣∣∣ dx <∞.

b) sup0≺w�1 ŵ
∑

h�c/w K2(h�w) −→ 0 as c −→∞.

c) K is bounded function with bounded support I = [−1, 1]d, κ :=
∫
I
K2(u)du <∞ and

sup|s−h|�1
∑

h∈Zd |K(h�w)−K(s�w)| = O (1) as w −→∞.
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4 Main results

In this section our consistency and asymptotic normality result require the short-range
dependence assumptions ∆p :=

∑
t�0 δp (t) < ∞; namely, the cumulative dependence of

ε (0) on the future values X(t)t�0 is finite. Our first main result is the following

Theorem 4.1 Let Assumptions 1, 2:a) are satisfied. Assume E {X(t)} = 0, X(t) ∈
Lp, p ≥ 2 and ∆p <∞. Let Bn −→∞ and B̂n = o (n̂) as n −→∞. Then

sup
λ
‖fn(λ)− f(λ)‖p/2 −→ 0. (8)

The following theorem establishes the asymptotic normality of the estimator spectral
density.

Theorem 4.2 Assume E {X(t)} = 0, E {X4(t)} < ∞ and ∆4 < ∞. Let Bn −→
∞, B̂n = o (n̂) as n −→∞. Then under Assumptions 1, 2:b), we have

(n̂b̂n)1/2 (fn(λ)− E {fn(λ)}) −→ N
(
0, σ2(λ)

)
, (9)

where
σ2(λ) = η(λ)f 2(λ)κ,0 � λ � π

η(λ) =

{
2, if λ

π
∈ Zd.

1, if λ
π
/∈ Zd.

To state the maximum deviations result, we need the following assumptions
Assumption 3
There exists 0 < δ < δ < 1 and c1, c2 > 0 such that for all large n̂, c1n̂

δ ≤ B̂n ≤ c2n̂
δ

holds.
Assumption 4

a) ∆p = O
(
n̂−T1

)
with T1 > max

[
1
2
− (p− 4) / (2pδ) , 2δ/p

]
.

b) ∆p = O
(
n̂−T2

)
with T2 > max [0, 1− (p− 4) / (2pδ)] .

Theorem 4.3 Assume X(0) ∈ Lp, p > max (4, 2/ (1− δ)) and E {X(0)} = 0. Further
assume Assumptions 1, 2:c), 3 and 4. Let λ∗i = π |i| . 1

Bn
. Then, for all x ∈ R,

P

[
max
i

n̂

B̂n

|fn(λ∗i )− E {fn(λ∗i )}|
2

f 2(λ∗i )κ
− 2 log B̂n + log

(
π log B̂n

)
≤ x

]
−→ e−e

−x/2

. (10)
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