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Résumé. Nous disposons d’observations bruitées Yi sur la sphère unité S2 de R3:
Yi = εiXi, i = 1 · · ·n. Celles-ci sont obtenues à partir de directions Xi corrompues par
une rotation aléatoire εi ∈ SO(3). LesXi et εi sont supposés indépendants. La densité des
observations Yi est la convolée de la densité originelle et de celle du bruit fY = fε?f. Nous
supposerons que la densité des εi est connue. Nous cherchons à tester si la densité des Xi

provient de la densité uniforme sur la sphère ou non à partir des données bruitées Yi. Le
test d’adéquation se fait dans un cadre non-paramétrique, les alternatives étant exprimées
sur des classes de Sobolev ou celles des fonctions analytiques. Nous considérons deux types
de régularité sur le bruit, un bruit ordinairement régulier et très régulier. Les vitesses
obtenues par notre procédure sont optimales. Il est à noter qu’avec un bruit très régulier
les vitesses de séparation ne sont que logarithmiques pour des classes de Sobolev mais
deviennent polynomiales pour des densités analytiques. Nous illustrerons nos résultats
théoriques par des simulations et des données réelles provenant de problématiques en
astrophysique.

Mots-clés. Déconvolution sphérique, alternatives non-paramétriques, classe de Sobolev,
classes analytiques, bruit régulier et très régulier, harmoniques sphériques.

Abstract. We consider the nonparametric goodness-of-fit test of the uniform density
on the sphere when we have observations whose density is the convolution of an error
density and the true underlying density. We will deal specifically with the smooth and
supersmooth error case, this latter includes the Gaussian distribution. Similar to decon-
volution density estimation, the smoother the error density the harder is the rate recovery
of the test problem. When considering nonparametric alternatives expressed over Sobolev
and analytic classes, we show that it is possible to obtain original separation rates. Fur-
thermore, we show that our adaptive statistical procedure attains these optimal rates.

Keywords. Spherical deconvolution, nonparametric alternatives, Sobolev classes,
Analytic classes, smooth and supersmooth noise, spherical harmonics.
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1 Introduction
We consider the spherical convolution model. We observe: Yi = εiXi, i = 1, . . . , N
where the εi are i.i.d. random variables of SO(3) the rotation group in R3 and the Xi’s
are i.i.d. random variables on S2, the unit sphere of R3. We suppose that Xi and εi are
independent. We also assume that the distributions of Yi andXi are absolutely continuous
with respect to the uniform measure on S2 and we set fY and f the densities of Yi and Xi

respectively. The distribution of εi is absolutely continuous with respect to the probability
Haar measure on SO(3) and we will denote the density of the εi’s by fε. We suppose that
fε is known. Then we have fY = fε ? f, where ∗ denotes the convolution product which
is defined by:

fε ? f(ω) =

∫
SO(3)

fε(u)f(u−1ω)du. (1)

Roughly speaking, the spherical convolution model provides a setup where each gen-
uine observation Xi is contaminated by a small random rotation. The aim of the present
paper is to provide a nonparametric adaptive minimax goodness-of-fit testing procedure
on f from the noisy observations Yi. More precisely, let f 0 being the uniform density on
S2, we consider the problem of testing the null hypothesis f = f 0 against alternatives
expressed in L2 norm over Sobolev classes and analytic classes.

Convolution models have been extensively studied in the Euclidean setting. However,
so far, only estimation has been treated in the spherical setup. The pioneer works of
[3], [6], [7] introduced a minimax estimation procedure based on the Fourier basis of
L2(S2). Recently, [5] proposed an optimal and adaptive hard thresholding estimation
procedure based on needlets. Goodness-of-fit testing has mainly focused on the case of
direct observations. Indeed, very few works have been devoted to the case of indirect
observations. Let us cite the works of [1] for the inverse regression problem and [4] for the
multivariate convolution density model. [2] built minimax nonparametric goodness-of-fit
testing for convolution models based on kernels methods made a step forward by building
an adaptive testing procedure in the noisy setup.

In this work, we establish several results for both smooth and supersmooth noises.
We exhibit the optimal rates for adaptive cases. We prove that our statistical procedure
attains those optimal rates.

The plan of the submission is as follows. In Section 2, we give a brief overview
about harmonic analysis on SO(3) and S2 which will be necessary throughout the paper.
In Section 3 we define the test hypotheses and the smoothness assumptions about the
unknown density f and the noise εi. We also introduce the adaptive goodness-of-fit
testing procedure. In Sections 4 we compute upper bounds for testing rates for the
ordinary smooth noise case and the super smooth noise case. Note that for sake of clarity
and concision we decide note to present the lower bounds but they can be found in [1]
and [2].
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2 Some preliminaries
This section provides the basic tools of harmonic analysis on the group SO(3) and the
unit sphere S2.

Let L2(SO(3)) denote the space of square integrable functions on SO(3).
Consider the rotational harmonics

Dklm(w) = Dklm(ã, b̃, c̃) = e−ilãdklm(cos b̃)e−imc̃ for w ∈ SO(3),

where (ã, b̃, c̃) are the Euler angles for w with ã ∈ [0, 2π), b̃ ∈ [0, π), c̃ ∈ [0, 2π), dklm for
−k ≤ l,m ≤ k, k ∈ N := {0, 1, 2, . . .} are related to the Jacobi polynomials.

Let h ∈ L2(SO(3)). We define the rotational Fourier transform on SO(3) by

ĥklm =

∫
SO(3)

h(w)Dklm(w)dw, (2)

with dw the probability Haar measure on SO(3). We think of (2) as the matrix entries
of the dk × dk matrix ĥk =

[
ĥklm

]
, where dk := 2k + 1, −k ≤ l,m ≤ k, k ∈ N.

We shall do an analogue analysis for S2. Any point x ∈ S2 can be represented by

x = (cos b sin a, sin b sin a, cos a)>,

where a ∈ [0, π), b ∈ [0, 2π) and superscript “>” denotes transpose.
Let the spherical harmonics be

φkl(x) = φkl(a, b) = (−1)l

√
(2k + 1)(k − l)!

4π(k + l)!
P k
l (cos a)eilb for x ∈ S2, (3)

where a ∈ [0, π), b ∈ [0, 2π), −k ≤ l ≤ k, k ∈ N and P k
l are the Legendre functions.

Let L2(S2) denote the space of square integrable functions on S2 and f ∈ L2(S2). We
define the spherical Fourier transform on S2 by

f̂kl =

∫
S2
f(x)φkl(x)dx, (4)

where dx is the spherical measure on S2 and the overbar denotes complex conjugation.
Again we think of (4) as the vector entries of the dk vector f̂k =

[
f̂kl

]
, −k ≤ l ≤ k, k ∈ N.

We have the following convolution property which will be useful for the construction
of the test procedure.

(ĥ ? f)k = ĥkf̂k for k ∈ N. (5)
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3 Testing uniformity on the sphere
Model and assumptions

The uniform density f 0 on S2 is given by f 0 = 1
4π
1S2 . Define a separation measure

between f 0 and f by ∆f := ‖f − f 0‖2. The uniform testing problem is

H0 : f = f 0 versus Ha : f ∈ Ha(F ,M, ψN)

based on the random sample Y1, . . . , YN , where the alternative is

Ha(F ,M, ψN) = {f : f ∈ F and ∆f ≥MψN}

for a class F of densities, a testing rate ψN and M a constant.

For any test T , the maximal misclassification error rate (or the risk for the zero-one
loss) is defined by

RN(T,F ,M, ψN) = Pf0(T = 1) + sup
{
Pf (T = 0) : f ∈ Ha(F ,M, ψN)

}
. (6)

In this paper, we will focus on alternative based on Sobolev classes and analytic
functions. Let

‖f‖2Wα
=
∑
k≥0

(k + k(k + 1))α‖f̂k‖2.

We denote the Sobolev space byWα(S2, R) =
{
f : S2 → R+,

∫
S2 f = 1 and ‖f‖2Wα

≤ 1
4π

+R2
}
,

for some fixed constant R > 0.
As for the analytic classes, the analytic norm is defined as

‖f‖2Ap,r =
∑
k≥0

exp (2pkr)
∥∥∥f̂k∥∥∥2.

An analytic class of densities is given byAp,r(Q) =
{
f : S2 → R+,

∫
S2 f = 1 and ‖f‖2Ap,r ≤

1
4π

+Q2
}
,

where p > 0, r > 0, Q > 0 are finite constants.

Noise assumptions
Let Ek be the dk-dimensional vector space spanned by {φkl : −k ≤ l ≤ k} for each

k ∈ N. Thus any v ∈ Ek can be written as v = v̂>k φk and through Parseval’s identity, the
usual L2-norm is ‖v‖22 = ‖v̂k‖2. Now according to (5), ĥk and ĥ−1k are also understood as
maps ĥk : Ek → Ek and ĥ−1k : Ek → Ek defined by

ĥkv = (ĥkv̂k)
>φk and ĥ−1k v = (ĥ−1k v̂k)

>φk for v = v̂>k φk ∈ Ek.
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Again by Parseval’s identity, ‖ĥkv‖22 = ‖ĥkv̂k‖ for all k ≥ 0. Consequently, we have the
operator inequality,

∥∥∥ĥk∥∥∥
op

= sup
v 6=0,v∈Ek

∥∥∥ĥkv∥∥∥
2

‖v‖2
and

∥∥∥ĥ−1k ∥∥∥
op

= sup
v 6=0,v∈Ek

∥∥∥ĥ−1k v
∥∥∥
2

‖v‖2
. (7)

For all k ∈ N, the matrix ĥk is invertible and there exist constants q > 0, s > 0,
b0 > 0, b1 > 0, ν0, ν1 ∈ R such that∥∥∥ĥ−1k ∥∥∥

op
≤ b0k

ν0 exp (qks) (8)

and ∥∥∥ĥk∥∥∥
op
≤ b1k

−ν1 exp (−qks) . (9)

The error density h is referred to ordinary smooth if s = 0 and to supersmooth otherwise.

Test procedure
The test procedure relies on the construction of an estimator of the separation measure

∆f .
By (5) we can write,

f̂k = f̂−1εk f̂Y k,

provided of course that the matrices f̂εk are invertible for all k ∈ N in a range of interest.
We construct an empirical version f̂Y k of as f̂NY k = 1

N

∑N
j=1 φk(Yj).

Define

G(y1, y2) :=
K∑
k=1

〈Φk(y1),Φk(y2)〉 where Φk = f̂−1εk φk, for y1, y2 ∈ S2. (10)

Then UK := 1
N(N−1)

∑
1≤i1 6=i2≤N G(Yi1, Yi2) is a natural estimator of ∆2

f .

4 Asymptotic results for the supersmooth noise case
Sobolev alternatives

Theorem 1. Let ψN = (logN)−2α/s and K0 > 0. We consider K∗ =

⌊(
1
q

log(N)/8
)1/s⌋

and the test statistic
DN = 1{|UK∗ |/t2K∗>K0}

with t2K = K2ν0+1 exp(2qKβ)/N. Then, if M > K0 + ((4π)−1 +R2)(1/(16q))−2α/s,

lim
N→∞

RN(DN ,Wα(S2, R),M, ψN) = 0
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Analytic alternatives

Theorem 2. Suppose (8) holds. Let p ≥ p0 > 0, 0 < s ≤ r
2
and Q > 0. Let L =

(
2

M2s
log logN

)1(0≤s≤1)
1

2−s+1(s>1)
1
s

 and U =

⌈
2
(

logN
2p0

) 1
s

⌉
. Let the test DN be defined

by DN := 1(maxK∈K |UK |/τK>1) with τK = ξK
2ν0+1−s/2 exp(2qKs)

N
and ξ = 1(0≤s≤1)K

(2−s)/2 +

1(s>1)K
s/2 , where K =

{
K : L ≤ K ≤ U

}
. Let

ψN = exp

[
−1

2
logN + q

(
logN

2p

)s/r
+

2ν0 + 1 + (1− s)1(0 ≤ s ≤ 1)

2r
log

logN

2p

]
.

Then if M > (Q2 + 2)
1
2 ,

lim
N→∞

RN(DN ,Ap,r(Q),M, ψN) = 0.
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