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Résumé. On étudie la convergence de Z-estimateurs θ̂(η) pour lesquels la fonction
objective dépend d’un paramètre η appartenant à un espace de BanachH. On démontre la
consistence uniforme sur H, la convergence faible dans l∞(H) et la validité du bootstrap.
Lorsque η est un paramètre de “tuning” ayant pour valeur optimale η0, on donne des
conditions pour qu’un estimateur η̂ puisse être remplacé par η0 sans changer la variance
asymptotique. Ces conditions ne demandent pas de vitesse particulière concernant la
convergence de η̂ vers η0. De manière similaire on montre que le bootstrap de θ̂(η̂) est
valide même sans effectuer un bootstrap de η̂. On s’intéresse à plusieurs applications et
on étudie plus en details le cas où η est la fonction de poids d’une régression pondérée.
Cette nouvelle approche permet d’obtenir des conditions générales quant à la procédure
d’estimation des poids optimaux. La précision de différentes procédures est évaluée par
simulation.

Mots-clés. Z-estimateurs, efficacité, bootstrap, processus empirique, régression
pondérée.

Abstract. We study the convergence of Z-estimators θ̂(η) for which the objective
function depends on a parameter η that belongs to a Banach space H. Our results in-
clude uniform consistency over H, weak convergence in l∞(H) and the validity of the
bootstrap. Furthermore when η is a tuning parameter optimally selected at η0, we give
conditions under which an estimated η̂ can be replaced by η0 without affecting the asymp-
totic variance. Interestingly, these conditions are free from any rate of convergence of η̂
to η0. A related feature is that the estimator θ̂(η̂) is bootstrapped without the need of
bootstrapping η̂. We highlight several applications of our results and we study in detail
the case where η is the function of weight in weighted regression. Our alternative treat-
ment allows to obtain new general conditions related to the estimation procedure of the
optimal weights. Small sample performances of different procedures are discussed through
simulations.

Keywords. Z-estimators, efficiency, bootstrap, empirical process, weighted regres-
sion.
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1 Asymptotic equicontinuity to achieve efficiency

Let P be a probability measure defined on the measurable space (Z,A) and (Z1, . . . , Zn)
be i.i.d. random elements with law P . For a measurable function f : Z → R, we define

Pf =

∫
fdP, Pnf = n−1

n∑
i=1

f(Zi), Gnf = n1/2(Pn − P )f,

where the latter one is called the empirical process. Considering the estimation of a
Euclidean parameter θ0 ∈ Θ ⊂ Rp, we denote by (H, ‖ · ‖) a Banach space and we let
{θ̂(η), η ∈ H} be a collection of estimators based on (Z1, . . . , Zn). Suppose furthermore
that there exists η0 ∈ H such that θ̂(η0) is efficient within this collection, i.e. θ̂(η0) has the
smallest variance among the estimators of the class. Such a situation arise in many fields
of the statistics: for instance, η can be the cut-off parameter in Huber robust regression,
or η might as well equal a function of weights in heteroscedastic regression (see later
for more details and examples). Unfortunately, η0 is generally unknown from us since it
certainly depends on the model P . Usually, one is restricted to first estimate η0 by, say
η̂, and then to compute the estimator of θ0: θ̂(η̂). Whereas it is reasonable to believe
that θ̂(η̂) is not a too bad estimator of θ0, it turns out that, in many different situations,
θ̂(η̂) actually achieves the efficiency bound of the collection (see for instance Newey and
McFadden (1994) or the examples later). This is even more surprising as soon as we
know that the accuracy of η̂ estimating η0 does not matter, provided its consistency. A
paradigm that encompasses the latter facts can be developed via the notion of asymptotic
equicontinuity. Define the process η 7→ Zn(η) =

√
n(θ̂(η)− θ0) and suppose that it lies in

l∞(H), it is asymptotically equicontinuous if for any ε > 0,

lim
δ→0

lim sup
n→+∞

P
(

sup
‖η1−η2‖<δ

|Zn(η1)− Zn(η2))| > ε
)

= 0. (1)

Clearly, for θ̂(η̂) to be efficient it suffices that
√
n(θ̂(η̂)− θ̂(η0)) = Zn(η̂)− Zn(η0) goes to

0 in probability. This is true if, in addition to (1), the following hold

P (η̂ ∈ H) −→ 1 and ‖η̂ − η0‖
P−→ 0. (2)

The latter reasoning sheds light on the role played by the continuity of the sample paths of
Zn, more specifically, one sees it is indeed at the root of the “no rates” conditions imposed
on η̂. Moreover, conditions (1) and (2) represents a trade-off we need to to accomplish
when selecting the norm ‖ · ‖. When one prefers to have ‖ · ‖ as weak as possible in order
to prove (2), one needs the metric to be strong enough so that (1) can hold. In many
statistical problems, one is able to show that

n1/2(θ̂(η)− θ0) = Gnϕη + oP (1),
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where the oP (1) is uniform in η and ϕη is often called the influence function. This
asymptotic decomposition of the process Zn permit to rely on empirical process theory
in order to show (1). As it is summarized by van der Vaart and Wellner (1996), good
conditions to impose concerns the metric entropy of the class of functions {ϕη : η ∈ H}.
A relevant paper is van der Vaart and Wellner (2007) in which the authors study conditions
implying that Gn(ϕη̂ − ϕη0) goes to 0 in probability.

2 Z-estimators indexed by objective functions

The main purpose of the present work is to establish general conditions for efficiency in
a Z-estimation context in which the objective functions are indexed by η ∈ H. More
formally, we consider θ0 and θ̂(η) defined as “zeros” of the maps

θ 7→ Pψη(θ) and θ 7→ Pnψη(θ),

where ψη(θ) is a measurable map defined on Z. Note that for efficiency purpose η does
not affect θ0. This makes η being a tuning parameter and not a nuisance. Under standard
assumptions from the Z-estimation literature (see the article cited bellow), we found that
efficiency of θ̂(η̂) is guaranteed if η̂ and H satisfies Condition (2) and the class

Ψ = {ψη(θ) : θ ∈ Θ, η ∈ H} is P -Donsker.

Within such a context, characterized by unknown asymptotic distribution, an essential
tool to make inference is the bootstrap. The bootstrap empirical process is defined
as P∗nf = n−1

∑n
i=1Wi,nf(Zi), where the sequence of weights (Wi,n)i=1,...,n is indepen-

dent from the sequence (Zi)i=1,...,n and satisfies conditions from Praestgaard and Wellner

(1993). The bootstrap estimator θ̂∗(η) satisfies

P∗nψη(θ) = 0.

Under mild additional assumptions, we show that the bootstrap works for θ̂∗(η̂), i.e. the
asymptotic distribution of

√
n(θ̂∗(η̂) − θ̂(η̂)) conditionally on (Zi)i=1,...,n, is the same as√

n(θ̂(η̂) − θ0). Interestingly, a bootstrap of the optimal parameter η0 is not needed.
This common property is due to the asymptotic equicontinuity of the underlying process
η 7→ G(ψη(θ0)).

The tools we use in the proof are reminiscent of the following Z-estimation literature.
Because Z-estimation theory handles famous statistical methods such as maximum like-
lihood or least-square estimation, it has received much attention over the last decades.
One may first mention the case where θ0 is Euclidean for which asymptotic normality
is obtained for instance in Huber (1987). Later, some authors considered θ0 an infinite
dimensional parameter. Weak convergence with root n rates is obtained in van der Vaart
(1995) and the bootstrap is studied in Wellner and Zhan (1996). Taking into account a
nuisance parameter with possibly, slower than root n rates of convergence, is developed
in Van Keilegom (2003).
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3 Weighted regression

The typical applications we have in mind deal with weighted regression. This technique,
that attribute different weights to certain observations, is an important tool to handle
heteroscedasticity in a data. In the case of a linear regression with (Yi, Xi)i=1,...,n, Yi ∈ R
and Xi ∈ Rq, it consists basically in computing

β̂(w) = argminβn
−1

n∑
i=1

(Yi − βTXi)
2w(Xi), (3)

where w is a real valued function. Among such a collection of estimators, there exists
an efficient member θ̂(w0) (see Bates and White (1993)). Many studies have focused on
the estimation of w0, for instance, Carroll and Ruppert (1982) argued that a parametric
estimation of w0 can be performed, in Robinson (1987), nonparametric tools are used
to approximate w0. In most of the cases, the authors succeed in showing efficiency.
Nevertheless, they rely on relatively long calculations that seems really particular to each
context (given by the loss function and the estimator of w0). Our approach overpass this
issue by providing high-level conditions on the estimation of w0. These conditions are
in some ways independent from the rest of the problem. In summary we require that
‖ŵ − w0‖ −→ 0 in probability (with mild conditions on ‖ · ‖) and P (ŵ ∈ W)→ 1 where
the class W is such that, for any δ > 0∫ δ

0

sup
Q

√
logN (ε,W , L2(Q))dε < +∞,

where the supremum is taken over all finitely discrete probability measures. In a paramet-
ric modelling of w0 the latter conditions are easy to obtain. For nonparametric estimators,
one possibility is to ask for smoothness restrictions on the class W in regards to the di-
mension q (see Theorem 2.7.1 in van der Vaart and Wellner (1996)).

4 Examples

As it was discussed in the introduction, the results of the paper have applications in
showing the efficiency of estimators for which the tuning parameter has been estimated
and then plugged-in. This occurs at different levels of statistical theory. We raise in the
next several examples.

Example 1 (Least square constrained estimation) Let θ̂ be an arbitrary but consistent
estimator of θ0. The estimator θ̂c is said to be a least square constraint estimator if it
minimizes (θ − θ̂)TΓ(θ − θ̂) over θ ∈ Θ, where Γ is a symmetric positive definite matrix.
Consequently θ̂c depends on the choice of Γ but since |θ̂c − θ̂|22 ≤ const.|Γ1/2(θ̂c − θ̂)|22 ≤
|Γ1/2(θ0 − θ̂)|22 → 0 in probability, the matrix Γ does not change the target quantity θ0.
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It is well know that θc is efficient when Γ equals the inverse of the asymptotic variance
of θ̂ (see Newey (1994), section 5.2). Such a class is popular among econometricians and
known as minimal distance estimator (Newey (1994)).

In the above illustrative example, the use of asymptotic equicontinuity of the process
Γ 7→

√
n(θ̂(Γ)−θ0) is not really legitimate since we can show the efficiency of the procedure

using more basic tools such as Slutsky’s lemma in Euclidean space. This is due of course
to the Euclideanity of θ and Γ but also to the simple form of the map (θ,Γ) 7→ (θ −
θ̂)TΓ(θ − θ̂). As a consequence we highlight below more involved examples in which the
tuning parameter is either a function (examples 2, 4 and 5) or represents a complicated
dependence structure between θ and η (Example 3). To our knowledge, the efficiency
property of these examples are quite difficult to obtain.

Example 2 (weighted regression) Other losses than the square function can be used and
this choice is often related to the noise distribution. Examples include Lp losses, Huber
robust loss (see the next example) and least absolute deviation. As in (3), heteroscedas-
ticity can be handled through a weighting of the observations. In a general framework, a
formula for the optimal weights is derived in Bates and White (1993).

Example 3 (Huber cut-off) Whereas weighted regression handles heteroscedasticity in
the data, the cut-off in Huber regression represents the adaptation of the objective function
to the distribution of the noise (see Huber (1967)). The Huber objective function is the
continuous function that coincides with the identity on [−c, c] (c is called the cut-off)
and is constant elsewhere. For instance, a Z-estimator based on this function permits
to take care about big tails in the noise distribution by under-weighting large outliers.
The choice of the cut-off might be done through an asymptotic variance minimization.
An alternative way that seems more “sample-based” consists in minimising the bootstrap
approximation of the mean square error.

Example 4 (instrumental variable) In Newey (1990), the class of nonlinear instrumental
variable is defined through a GMM approach. The estimator θ̂ depends on a so-called
“function of instrument” A and satisfies the equation n−1

∑n
i=1A(Z̃i)ψ(Zi, θ) = 0, where

each Z̃i a set of coordinates of Zi. The optimal choice of A can be perform via an analysis
of the asymptotic variance.

Example 5 (dimension reduction) Sliced inverse regression, introduced by Li (1991), is
an important tool for dimension regression. Under the so called linearity condition, the
vector EXψ(Y ) describes a subspace of interest when ψ varies. A study of the asymptotic
variance leads to an optimal ψ0. The same can be done for another popular method called
sliced average variance estimation.
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