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Résumé: Dans cette communication, nous proposons, une classe de processus GARCH à seuil à coe¢ cients périodiques

(PTGARCH). Pour ces processus, nous donnons des conditions assurant la stationnarité (au sens périodique) stricte et

faible, l�existence des moments et la représentation ARMA. Le concept d�ergodicité géometrique et de ��mélange des
modèles PTGARCH est aussi étudié. Une approche par quasi-maximum de vraisemblance est proposée pour estimer les

paramètres du modèle et ses propriétés asymptotiques.

Abstract: In this talk, we propose a natural extension of threshold GARCH (TGARCH) processes to periodically

time-varying coe¢ cients (PTGARCH). Some theoritical probabilistic properties of PTGARCH are discussed. This

models, can be viewed as a special of random coe¢ cient GARCH models. For this class of processes, �rstly, we establish

theoritical conditions, which ensure that the process in the threshold model is strictly and second�order stationary (in
periodic sense). Secondary, we derive conditions ensuring the existence of moments of any order. As a consequence, we

observe that some subclass have the L2�structures of threshold periodic ARMA processes (PTARMA) and hence admit
PARMA representation. The concept of geometric ergodicity and ��mixing of PTGARCH processes are also discussed

under general and tractable assumptions. These results are applicable to standard GARCH models and have statistical

implications such as parameter estimation and order identi�cation. Some examples as special cases are proposed and

studied.

Keywords: Periodic ThresholdGARCH model, stationarity, higher order moments, geometric ergodicity and ��mixing.

1 Introduction

A process " = ("n)n2Z de�ned on some probability space (
;=; P ) is called a periodic PTGARCH (p; q) process with
periodic s > 0 if it is solution to the following stochastic di¤erence equation

8n 2 Z : "n = hnen and hn = �0(sn) +
qX
i=1

�
�i(sn)"

+
n�i + �i(sn)"

�
n�i
�
+

pX
j=1

j (sn)hn�j (1.1)

where "+n =
jenj+ en

2
, "�n =

jenj � en
2

, (sn)n is a periodic sequence of positive integers with �nite state space S = f1; :::; sg

de�ned by sn :=
sP

k=1

kI�(k)(n) with �(k) := fsn+ k; n 2 Zg which refers to the stage or "season" of the periodic cycle

at time n, (en)n2Z is a sequence of independent identically distributed (i:i:d:) random variables de�ned on the same
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probability space (
;A; P ) with zero mean and unit variance and ek is independent of �n for k > n (the independence of
(en)n2Z may be relaxed to a martingale di¤erence assumption).

In equation (1:1), the volatility process (hn)n2Z depending at time n, not necessarily symmetrically, through the

coe¢ cients �i(sn) and �i(sn) together on the modulus and the sign of the past innovations. By setting n = st + v,

"st+v = "t (v) ; hst+v = ht (v) and est+v = et (v) ; Model (1:1) may be equivalently written as

8t 2 Z : "t (v) = ht (v) et (v) and ht (v) = �0(v) +
qX
i=1

�
�i(v)"

+
t (v � i) + �i(v)"�t (v � i)

�
+

pX
j=1

j (v)ht (v � j) ; (1.2)

which we will make heavy use. In (1:2), �0(v); �i(v); �i(v) and j(v) with i 2 f1; :::; qg and j 2 f1; :::; pg are the model
coe¢ cients at season v and "t (v) refers to "t during the v � th �season� or regime, v 2 f1; :::; sg of cycle t: For the
convenience, "t (v) = "t�1 (v + s) ; ht (v) = ht�1 (v + s) and et (v) = et�1 (v + s) if v < 0. The non-periodic notations

("t) ; (ht) ; (et) etc. will be used interchangeably with the periodic notations ("t (v)) ; (ht (v)) ; (et (v)) etc. Note that

there are not restrictions to guarantee the positivity of ht (v). However, the parameters of TGARCH (p; q) model have

to be restricted to guarantee the stationarity (in periodic sense) and the existence of moment of some orders. The process

("n)n2Z is globally non stationary, but is stationary within each period, are becoming an appealing tool for investigating

both volatility and distinct �seasonal�patterns with threshold e¤ect and continue to gain a growing interest especially

in �nance and monetary economics. Before processing, some algebraic notations are used throughout the paper.

I(n) is the n� n identity matrix, O(n;;m) denotes the matrix of order n�m whose entries are zeros, for simplicity we

set O(n) := O(n;n) and O(n) := O(n;1). The spectral radius of squared matrixM is noted � (M), k:k refers to the standard
norm in Rn or the uniform induced norm in the space M(n) of n � n matrices. 
 denotes the Kronecker product of

matrices. V ec (M) is the usual column stacking vector of the matrix M . For any p > 0, Lp = Lp(
;=; P ) denotes the
space of random variables X de�ned on some probability space (
;=; P ) such that E fjXjpg < +1. The usual norm in

Lp is given by kXkp = EfjXjpg if p 2 ]0; 1[ and (EfjXjpg)
1
p otherwise.

For non-periodic case, some probabilistic results have been established, in particular necessary and su¢ cient condi-

tions of stationarity and ergodicity have studied by Gonçalves and Mends-Lopes [5]. The stationarity and ergodicity

(in periodic case) of model (1:2) may be expressed as follows. De�ne the p�vectors H = (1; 0; :::; 0)
0
; 

1:p
(v) :=

(1 (v) ; :::; p (v))
0, 2q�vector �

1:q
(v) := (�1 (v) ; �1 (v) ; :::; �q (v) ; �q (v))

0, r = (2q + p)�random vectors "t(v) :=�
"+t (v) ; "

�
t (v) ; :::; "

+
t (v � q + 1) ; "�t (v � q + 1) ; ht (v) ; :::; ht (v � p+ 1)

�0
, �

v
(et (v)) := �0(v)(e

+
t (v) ; e

�
t (v) ; O

0
(2(q�1));H

0)0

and r � r� random matrix

�v(et (v)) =

0BBBBBBB@

�
1:q�1 (v) e

+
t (v) �q (v) e

+
t (v) �q (v) e

+
t (v) 

1:p�1 (v) e
+
t (v) p (v) e

+
t (v)

�
1:q�1 (v) e

�
t (v) �q (v) e

�
t (v) �q (v) e

�
t (v) 

1:p�1 (v) e
�
t (v) p (v) e

�
t (v)

I(2(q�1)) O(2(q�1)) O(2(q�1)) O(2(q�1);p�1) O(2(q�1))
�
1:q�1 (v) �q (v) �q (v) 

1:p�1 (v) p (v)

O(p�1;2(q�1)) O(p�1) O(p�1) I(p�1) O(p�1)

1CCCCCCCA
r�r

. (1.5)

With this notation, Equation (1:2) may be rewritten in Markovian state space,

"t(v) = �v(et (v))"t(v � 1) + �v(et (v)). (1.6)

Since (et)t2Z is an i:i:d process, the random matrices (�t (et))t2Z are independent and periodically distributed (i:p:d),

so Eq (1:6) is the same as the de�ning equation for multivariate generalized periodic random coe¢ cient autoregressive
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(RCAR) model, except that random matrix �t(et) is not independent of �t(et) as is required in these models (see

Aknouche and Guerbyenne [1] and the references therein).

2 Periodic stationarity

Periodically-varying coe¢ cients models, are not only of interest in their own right, but, because of their connection with

multivariate models with constant coe¢ cients. This claim is based upon the following construction. Indeed, iterate

equation (1:6) s�time to get the following equality

"t(s) =

(
s�1Y
v=0

�s�v(et (s� v))
)
"t(0) +

sX
k=1

(
s�k�1Y
v=0

�s�v(et (s� v))
)
�
k
(et (k)).

where, as usual, empty products are set equal to I(r). Set "t(0) = "t (if there is no confusion) then

"t+1 = �(et)"t + � (et) (2.1)

where et = (et(1); :::; et(s))
0
;�(et) =

(
s�1Y
v=0

�s�v(et (s� v))
)
and �(et) =

sX
k=1

(
s�k�1Y
v=0

�s�v(et (s� v))
)
�
k
(et (k)). It is

worth noting that (�(et))t2Z is a sequence of i:i:d: random matrices independent of "k for k � t, and (� (et))t2Z is a

sequence of i:i:d: random vectors. So, it follows from Gladysev [8] that the r�dimensional equation (1:6) (or equivalently
(1:2)) is strictly (resp. second-order, ergodic) periodically stationary (hereafter SPS) (resp. PC, PE) if and only

if equation (2:1) is strictly (resp. second-order, ergodic) stationary. However, the key tool for studying the strict

stationarity of equation similar to (2:1) is the top�Lyapunov exponent L (�) associated with the sequence of random
matrices (�(et))t2Z de�ned by

L (�) := inf
t>0

8<:1t E
8<:log


t�1Y
j=0

�(et�j)


9=;
9=; a.s.
= lim

t�!1

8<:1t log

t�1Y
j=0

�(et�j)


9=; (2.2)

in which the second equality can be justi�ed using Kingman�s [7] subadditive ergodic theorem and the existence of

L (�) is guaranteed however by the fact that E
�
log+ k�(et)k

	
� E fk�(et)kg < +1, where log+ (x) = max (log x; 0)

for any x > 0. This shows that L (�) is independent of the chosen norm, so L (�) = lim
t�!1

8><>:log

t�1Y
j=0

�(et�j)


1=t
9>=>; =

log �

 
s�1Y
v=0

�s�v

!
when �(et) is non-random matrix.

2.1 Strict periodic stationarity

Since (et)t2Z is a stationary and ergodic process, then
�
�(et); � (et)

�
t2Z is also a strict stationary and ergodic process

and E
�
log+ k�(e0)k

	
<1 and E

�
log+

� (e0)	 <1: Then we have the following theorem
Theorem 2.1 Equation (2:1) has a strictly stationary solution given by

�t+1 =
X
k�0

8<:
k�1Y
j=0

�(et�j)

9=; � �et�k� (2.3)

3



if and only if L (�) < 0. Moreover, the series (2:3) converges absolutely almost surely and the solution process is unique,

ergodic and causal.

Remark 2.1 Even if the condition L (�) < 0 could be used as a necessary and su¢ cient condition for the strict

stationarity of equation similar to (2:1), it is of little use for practical checking of stationarity since this condition involve

the limit of products of in�nitely many random matrices. Hence, some simple su¢ cient conditions ensuring the negativity

of L (�) can be given:

1. If E

(
log


(
s�1Y
v=0

�s�v(et (s� v))
)
)
< 0 or E


(
s�1Y
v=0

�s�v(et (s� v))
) < 1 then L (�) < 0:

2. If E

8<:log


rY
j=0

�(et�j)


9=; < 0 then L (�) < 0:

3. If � (�) < 1, then L (�) < 0 where � = E

(
s�1Y
v=0

�s�v(et (s� v))
)
:

Corollary 2.1 For PTGARCH (1; 1) the su¢ cient condition given in remark (2:1) reduces to E

(
log

(
sY

v=1

j�v (0)j
))

< 0 where �v (t) = �1 (v) e
+
t (v � 1) + �1 (v) e�t (v � 1) + 1 (v).

Remark 2.2 A condition involving matrices of smaller dimension can be obtained. Indeed, assume that �i (v) =

�!�i (v) for all i 2 f1; :::; qg and v 2 f1; :::; sg with ! 6= 1;then with ~"t (v) := ("+t (v) � !"�t (v) ; :::; "+t (v � q + 1) �
!"�t (v � q + 1) ; ht (v) ; :::; h0t (v � p+ 1))0 2 Rr�q, we obtain the representation ~"t (v) = ~�v(et (v))~"t (v � 1)+~�v(et (v))with

~�
v
(et (v)) = �0 (v)

�
! (et (v)) ; O

0
(q�1);H

0
�0
where ! (et) = e+t � !e�t and hence a version similar to (2:1), ~"t+1 =

~�(et)~"t + ~� (et) in which
�
~�(et)

�
are (r � q)� (r � q)�random matrices with ~"t(0) = ~"t.

2.2 Second-order periodic stationarity

In this subsection we examine the conditions ensuring the existence of a unique causal periodically ergodic and periodically

correlated (PC) solution to (1:2). Formally a second-order process ("t)t2Z is said to be PC with period s; if for any

integers t and k, E f"t+sg = E f"tg and Cov ("t+s; "k+s) = Cov ("t; "k), so when s = 1 a PC process is equivalent to

second-order stationary process. PC time series are common in many scienti�c �elds where the observed phenomena

have signi�cant periodic behavior in mean, variance and covariance structure, namely in meteorology, hydrology, �nance

and economy. For convenience, we shall considered the centred version of the state-space representation (1:6), i.e.,

~"t+1 = �(et)~"t + ~� (et) (2.4)

The main properties of the representation (2:4) are summarized in the following proposition

Proposition 2.1 Consider the TGARCH (p; q) model (1:2) with state space representation (2:4), then the ~"l is orthog-
onal to ~� (ek) ; i.e., E

�
~"l~�

0 (ek)
	
= O for all k � l:

Theorem 2.2 Assume that E
�
e4t
	
<1 and

�
�
E
�
�
2(et)

	�
< 1 (2.6)
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then the series ~"t+1 =
X
k�0

8<:
k�1Y
j=0

�(et�j)

9=; ~� �et�k� converges absolutely a:s and in mean and constitute the unique, causal,
strictly stationary having moments up to second-order.

By analogy with integrated PGARCH, processes, we de�ne the integrated PTGARCH (IPTGARCH) as follows

De�nition 2.1 The PTGARCH process (1:2) is called IPTGARCH process if � (M) = 1 where M = E
�
�
2(et)

	
:

Now, we consider the strict periodic stationarity of IPTGARCH processes. For this purpose, we assume that the

functions �i(:); �i (:) and j (:) are positive for i 2 f0; 1; :::; qg, j 2 f1; :::; pg (so ht represents the conditional standard
deviation of "t given =t�1 = � ("j ; j � t� 1)), so according to the theorem on the irreducible non-negative matrices,

there exists some # = (#1; :::; #r)
0 2 Rr with positive entries and k#k = 1 such that #0M = #0: Let T = diag f#1; :::; #rg,

"�t = T"t, �
� (et) = T� (et)T

�1, �� (et) = T� (et). Then by equation (2:1) we have

"�t+1 = �
�(et)"

�
t + �

� (et) (2.7)

Lemma 2.1 Assume that functions �i(:); �i (:) and j (:) are positive for i 2 f0; 1; :::; qg, j 2 f1; :::; pg and � (M) = 1.
Then by choosing an appropriate matrix norm, the top-Lyapunov exponent L (��) associated with the sequence (��(et))t2Z
is strictly negative, so the equation (2:7) has a unique strictly stationary and ergodic solution. Moreover, the process

solution is given by

��t+1 =
X
k�0

8<:
k�1Y
j=0

��(et�j)

9=; �� �et�k� (2.8)

Proposition 2.2 Under the conditions of lemma 2.1, the IPTGARCH process de�ned by (1:2) has a unique SPS

solution with in�nite variance.

Theorem 2.3 Let (~"t)t be the stationary solution of model (2:4). Assume that E
�
e2mt

	
<1 for any m > 1:

1. If � (E f�
m (et)g) < 1 then ~"t 2 Lm:

2. Conversely, if � (E f�
m (et)g) � 1, and if for any v 2 f1; :::; sg, �0(v) > 0, �i(v) � 0; �i(v) � 0 and j(v) � 0
with i 2 f1; :::; qg and j 2 f1; :::; pg, then there is no strictly stationary solution (~"t)t satisfying (2:4) such that
~"t 2 Lm:

The geometric ergodicity and the ��mixing of a Markovian time series has been investigated by several authors (see
Bibi and Aknouche[2] for further detail). The basic tools, is the following assumption

C:0 (en)n is i.i.d. and has a probability distribution function absolutely continuous with respect to the Lebesgue

measure and such that the density function takes positive values a:s. on its support E � Rs:

Theorem 2.4 Under C:0; (2:2) and if there are 0 < � � 1 and � < 1 such that E
n
ke0k

�
o
� � and e0 2 L�; then

the process ("n)n de�ned by (2:1) is geometrically ergodic. Moreover, if initialized from its invariant measure, ("n)n is

strictly stationary and ��mixing with exponential decay.
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