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Résumé. Dans un environnement multivarié, le calcul de zones critiques et de périodes
de retour associées est un problème difficile. Un cadre théorique possible pour le calcul
de ces périodes de retour est essentiellement basé sur la notion de Copule et sur les
ensembles de niveau d’une distribution de probabilité multivariée. Dans ce travail, nous
proposons une méthodologie rapide et paramétrique pour estimer les zones critiques de
distributions multivariées et leurs périodes de retour associées. Le modèle est basé sur des
transformations des distributions marginales et sur des transformations de la structure
de dépendance au sein de la classe des copules Archimédiennes. La méthodologie est
illustrée sur des données réelles de précipitation. Sur ce jeu de données, nous développons
également un modèle imbriqué transformé.

Mots-clés. Transformations multivariées de probabilité, ensembles de niveau, estimation
de copules, les fonctions de conversion hyperboliques, périodes de retour multivariées.

Abstract. Calculating return periods and critical layers (i.e. multivariate quantile
curves) in a multivariate environment is a difficult problem. A possible consistent theoreti-
cal framework for the calculation of the return period, in a multi-dimensional environment,
is essentially based on the notion of copula and level sets of the multivariate probability
distribution. In this paper we propose a fast and parametric methodology to estimate
the multivariate critical layers of a distribution and its associated return periods. The
model is based on transformations of the marginal distributions and transformations of
the dependence structure within the class of Archimedean copulas. The methodology is
illustrated on rainfall 5-dimensional real data. We also develop a nested model on this
rainfall 5-dimensional real data set.

Keywords. Multivariate probability transformations, level sets, estimation copulas, hy-
perbolic conversion functions, risk assessment, multivariate return periods.

1 Introduction: the Return Periods

The notion of Return Period (RP) is frequently used in environmental sciences for the
identification of dangerous events, and provides a means for rational decision making
and risk assessment. Roughly speaking, the RP can be considered as an analogue of the
“Value-at-Risk” in Economics and Finance, since it is used to quantify and assess the
risk (see, e.g., Nappo and Spizzichino, 2009). In engineering practice, finance, insurance
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and environmental science the choice of the RP depends on the impact/magnitude of the
considered event and the consequences of its realisation. Equally important is the related
concept of design quantile, usually defined as “the value of the variable characterizing the
event associated with a given RP”. In the univariate case the design quantile is usually
identified without ambiguity. Conversely in the multivariate setting different definitions
are possible. For this reason, the identification problem of design events in a multivariate
context has recently attracted the attention of many researches (see for instance Salvadori
et al., 2007). In the following, we will consider a sequence X = {X1,X2, . . .} of indepen-
dent and identically distributed d−dimensional random vectors, with d > 1. Thus each
Xk, k ∈ N, has the same multivariate distribution FX : Rd

+ → [0, 1] as the nonnegative
real-valued random vector X ∼ FX = C(FX1 , . . . , FXd

) describing the hydrological phe-
nomenon under investigation. The function C is the d-dimensional copula associated to
F . We write I = {1, . . . , d} the set of indexes of the considered random variables and of
their associated cumulative distribution functions, i.e., FXi

(xi) = P (Xi ≤ xi), for i ∈ I.

Definition 1.1 (Critical layer) The critical layer ∂L(α) associated to the multivariate
distribution function FX of level α ∈ (0, 1) is defined as

∂L(α) = {x ∈ Rd : FX(x) = α}.

Then ∂L(α) is the iso-hyper-surface (with dimension d− 1) where F equals the constant
value α. The critical layer ∂L(α) partitions Rd into three non-overlapping and exhaustive
regions: 

L<(α) = {x ∈ Rd : FX(x) < α},
∂L(α) = the critical layer itself,
L>(α) = {x ∈ Rd : FX(x) > α}.

The Return Period is defined as the average time required for reaching the set L>(α),
that is:

RP>(α) = ∆t · E [N ] =
∆t

P [X ∈ L>(α)]
, (1)

where ∆t > 0 is the (deterministic) average time elapsing between Xk and Xk+1, k ∈ N.
The probability that a realization of this vector belongs to L<(α) is given by the Kendall’s
function, which only depends on the copula C of this random vector, i.e.,

KC(α) = P [X ∈ L<(α)] = P [C(U1, . . . , Ud) ≤ α] , for α ∈ (0, 1). (2)

Then, the considered Return Period can be expressed using Kendall’s function in (2),
RP>(α) = ∆t · 1

1−KC(α)
. This paper aims at:

• giving a parametric representation of the multivariate distribution F of a random
vector X, here representing rain measurements,
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• giving direct estimation procedure for this representation,

• giving closed parametric expressions, both for critical layers in Definition 1.1 and
Return Periods in (1),

• adapting this methodology to some asymmetric dependencies (as, for instance, non-
exchangeable random vectors) by using nested model for recorded data.

In the next section, we introduce the model used to answer the issues introduced above.

2 The transformed model

We consider the following model, which is detailed in Di Bernardino and Rullière (2013a),

F̃ (x1, . . . , xd) = T ◦ C0(T−1
1 ◦ F1(x1), . . . , T−1

d ◦ Fd(xd)),

where F1, . . . , Fd are given parametric initial marginal cumulative distribution functions,
and where C0 is a given initial copula. Hence the distribution F̃ (x1, . . . , xd) is built

from transformed marginals F̃i(x) = T ◦ T−1
i ◦ Fi(x), for i ∈ I and from a transformed

copula C̃(u1, . . . , ud) = T ◦C0(T−1(u1), . . . , T−1(u1)), under regularity conditions. Trans-
formation T permits to transform the initial dependence structure C0. For a given T ,
transformations Ti permit to transform marginals, i ∈ I. Furthermore we will assume in
the following that C0 is an Archimedean copula. In our paper we show how to estimate the
transformations T and Ti, i ∈ I. Estimation procedure is omitted here for sake of brevity.
For further details the interested reader is referred to Di Bernardino and Rullière (2015).

3 Numerical results on rainfall 5-dimensional real data

In the following, we present some estimation results on rainfall 5-dimensional real data
provided using our estimation procedure. Data comes from the website CISL Research
Data Archive (RDA). Geographical position of 5 stations and the scatter plot of ranks
of data are provided in Figure 1. We perform a Goodness-of-Fit test based on the em-
pirical process in order to test the quality of the adjustment of our transformed copula
C̃ on these multivariate data. We obtain a p−value equal to 0.38. In the large scale
Monte Carlo experiments carried out by Genest et al. (2009), the statistic Sn gave the
best results overall. An approximate p-value for Sn can be obtained by means of a para-
metric bootstrap-based procedure (see results in Table 1). In the following we intend
to show the flexibility of the proposed model and associated estimation procedure. In
particular, we adapt our methodology in the case of some asymmetric dependencies (as,
for instance, non-exchangeable random vectors). The correlation matrix of the considered
rainfall data is displayed in Figure 2(left). As we can see, some pairs of stations present
a bigger correlation. To illustrate how our model can be adapted to this situation we
have decided to create 2 different clusters. An hierarchical cluster analysis on the set of
dissimilarities produce by the distance of the Xi is developed. We obtain the result in
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Figure 1: Left: Scatter plot of ranks for the considered 797 monthly rainfall measurements (in

decimeter) in 5 stations of Sri-Lanka and India between January 1893 and June 2013. Right:

Geographical positions of 5 considered stations.

Copula under H0 Sn SBn SCn An

Gumbel-Hougaard 0.00331 0.00495 0.00454 0.03465
Clayton 0.00381 0.00980 0.00704 0.00981
Frank 0.00617 0.00941 0.00819 0.08416

t-Student 0.00495 0.00592 0.00498 0.00963
Normal 0.00980 0.00719 0.00454 0.00205

Joe 0.00819 0.00495 0.00454 0.00916

Table 1: The bootstrapped p−values for different Goodness-of-Fit tests (see Genest et al., 2009)

for competitor copula families on the considered 5-dimensional rainfall data, with n = 797. In

all cases, the number of Monte Carlo experiments is fixed at N = 1000.

Figure 2. As one can see, whatever the distance chosen for dissimilarities, the dendrogram
gives a justification to chosen clusters of station indexes {2, 3, 5} and {1, 4}. Then,
we firstly fit a 3−dimensional model for the first group and a 2−dimensional one for
the second one. We generate the pseudo-data coming from these two models and finally
we construct the joint (root) copula for these bivariate data-set. In the following we take
as initial copula C0 the independent one, and the initial margins Fi(x) = 1−e−x, i ∈ A,B.

The multivariate distribution for the cluster A = {2, 3, 5} is assumed to be written:

FA(x2, x3, x5) = TA ◦ C0(T−1
A ◦ F̃2(x2), T−1

A ◦ F̃3(x3), T−1
A ◦ F̃5(x5)), (3)

with F̃i = TA ◦ T−1
Ai
◦ Fi , for i ∈ A.
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
X1 X2 X3 X4 X5

X1 1 0.377 0.552 0.504 0.207
X2 0.377 1 0.698 0.178 0.660
X3 0.552 0.698 1 0.276 0.523
X4 0.504 0.178 0.276 1 0.018
X5 0.207 0.660 0.523 0.018 1


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Figure 2: Left: Correlation matrix of the considered rainfall data. Correlations greater than

60% are indicated in bold font. Right: Dendrogram resulting to the hierarchical cluster analysis

on the set of dissimilarities produced by the Euclidian distance on the rainfall data. Red boxes

show the two considered clusters.

The multivariate distribution for the cluster B = {1, 4} is assumed to be written:

FB(x1, x4) = TB ◦ C0(T−1
B ◦ F̃1(x1), T−1

B ◦ F̃4(x4)), (4)

with F̃i = TB ◦ T−1
Bi
◦ Fi , for i ∈ B.

The whole 5−dimensional distribution is assumed to be written:

F̃ (x1, x2, x3, x4, x5) = T ◦ C0

(
T−1 ◦ FA(x2, x3, x5), T−1 ◦ FB(x1, x4)

)
, (5)

where C̃(u, v) = T ◦ C0 (T−1(u), T−1(v)) is referred as the root copula at point (u, v).
It is effectively a proper copula if the transformation T satisfies admissibility conditions
that are given in Proposition 2.1 of Di Bernardino and Rullière (2013b). To estimate the
external transformation T of model (5) we firstly construct a bivariate pseudo data-set:

Z1 = FA(X1, X4), Z2 = FB(X2, X3, X5).

Then we fit on this bivariate data-set a model

F̃(Z1,Z2)(z1, z2) = T ◦ C0(T−1 ◦ F̃1(z1), T−1 ◦ F̃2(z2)),

with F̃i = T ◦ T−1
1 ◦ Fi , for i = 1, 2.

Let α ∈ (0, 1) be a targeted level for a critical layer. Let C0 be the initial copula to be
transformed, and assume that C0 is the independent copula. Then the analytical critical
layers of the distributions FB and FA are easy to obtain. For FB in (4), we have

∂LB(α) =
{

(x1, x4) : x1 = F̃−1
1 ◦ TB

(
(T−1

B (α))p
)
, x4 = F̃−1

4 ◦ TB
(
(T−1

B (α))1−p) , p ∈ (0, 1)
}
.
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Analytical expressions of the inverse of any transformed margins F̃i = T ◦ T−1
i ◦ Fi,

for i ∈ B, are available since inverse transformations are given and since the initial
distribution Fi is chosen to be readily invertible. Analogously, we get, for FA in (3)

∂LA(α) = {(x2, x3, x5) : x2 = F̃−1
1 ◦ TB

(
(T−1

B (α))p1
)
, x3 = F̃−1

3 ◦ TB
(
(T−1

B (α))p2
)
,

x5 = F̃−1
5 ◦ TB

(
(T−1

B (α))1−p1−p2
)
, p1, p2 ∈ (0, 1), p1 + p2 < 1}.

For the nested distribution F̃ in (5), one can write,

∂L(α) =
{

(x1, . . . , x5) : F̃ (x1, x2, x3, x4, x5) = α
}

=
{

(x1, . . . , x5) : T ◦ C0

(
T−1 ◦ FA(x2, x3, x5), T−1 ◦ FB(x1, x4)

)
= α

}
=

{
(x1, . . . , x5) : T−1 ◦ FA(x2, x3, x5) · T−1 ◦ FB(x1, x4) = T−1(α)

}
An illustration of critical-layers ∂LA(α) and ∂LB(α) derived above is provided in Figure 3.

Figure 3: Left: 2-dimensional critical-layers ∂LB(α) with α = 0.2, 0.5, 0.9 with associated

empirical critical-layers (blue dashed lines). Right: 3-dimensional critical layers ∂LA(α) with

α = 0.3, 0.9. Black dots represent rainfall data (X1, X4) (left) and (X2, X3, X5) (right).
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4 Genest, C., Rèmillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas : A review and a power study.
Insurance : Mathematics and Economics, 44(2) :199 - 213.

5 Nappo, G. and Spizzichino, F. (2009). Kendall distributions and level sets in bivariate exchangeable survival models.
Information Sciences, 179 :2878 -2890

6 Salvadori, G., De Michele, C., Kottegoda, N., and Rosso, R. (2007). Extremes in Nature : An Approach Using Copulas.
Springer-Verlag : Berlin

6


