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Résumé. Dans cette note, nous étudions quelques méthodes générales pour tester
un modèle paramétrique associé à une série chronologique markovienne à valeurs réelles
lorsque les vecteurs aléatoires sont non stationnaires et absolument réguliers. Notre idée
est d'utiliser un processus empirique marqué basé sur les résidus qui converge en loi vers
un processus gaussien.
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Abstract. In this Note, we study some general methods for testing the goodness-of-
�t of a parametric model for a real-valued Markovian time series under nonstationarity
and absolute regularity. For that, we de�ne a marked empirical process based on resi-
duals which converges in distribution to a Gaussian process with respect to the Skorohod
topology. This method was �rst introduced by Koul and Stute (1999), and then widely
developed by Ngatchou-Wandji (2002, 2008) [2-3] under more general conditions. Appli-
cations to general AR-ARCH models are given.

Keywords. Markovian time series, Marked empirical process, ψ-autoregressive func-
tion, ψ-residuals, Conditional mean function, Norm of total variation, Nonstationarity,
Geometrical absolute regularity, Skorohod topology, General AR-ARCH model.

1 Introduction

The purpose of this Note is to study a general method for testing the goodness-of-�t
of a parametric model for a Markovian time series. Now, we de�ne our model.

Let {Xi}i∈N be a sequence of random variables with continuous functions Fi on R.
Assume that Fi admits a strictly positive density.
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In this paper, we will suppose that the sequence {Xi}i∈N is absolutely regular with
the rate

β(n) = O(τn), 0 < τ < 1. (1)

Suppose that Fi converges to the distribution function F (for the norm of total va-
riation noted ‖ · ‖TV ) which admits a strictly positive density. Put Fi,j the distribution
function of (Xi, Xj). Furthermore, assume that for any l > 1, there exists a continuous

distribution function F̃l on R2 admitting a strictly positive density such that

‖Fi,j − F̃j−i‖TV = O(ρi0), 1 ≤ i < j ≤ n, n ≥ 1, 0 < ρ0 < 1 (2)

for which there exists a sequence {X̃i}i∈N of stationary random variables absolutely regular

with rate (1) and (X̃i, X̃j) has F̃j−i as distribution function (i < j + 1).
Some literature is concerned with parametric modeling in that m is assumed to belong

to a given family
M = {m(·; θ) : θ ∈ Θ} (3)

of function, where Θ ⊂ Rp is a proper parameter set.
Consider the general hypothesis testing the null hypothesis H0 is a parametric re-

gression model and belongs to a family given : m ∈ M versus the local alternatives
H1,n : m ≡ mn ∈ M1,n, n ≥ 1 or M1,n = {m = m(·; θ) + n−1/2r : θ ∈ Θ} where r
is a function satisfying E(r(X̃1)) 6= 0. For this purpose, we consider an empirical pro-
cess which, under H0, depends on the unknown but true parameter θ0. We estimate this
parameter by, say θ̃n, and then plug this estimator in the expression of the empirical
process. We next show that the resulting empirical process converges in the distribution
to a noncentred Gaussian process which has the same limit covariance function.

It is assumed that under H0, m0(x) = m(x, θ0) for some true value parameter θ0. The
problem is how to estimate or to test for the hypothesis when θ0 is unknown. A well known
case is, of course, the linear model in which m(x; θ) = g′(x)θ, g is a known vector-valued
function. Now, to describe these procedures, let ψ be a nondecreasing real-valued function
such that supiE|ψ(Xi − ν)| < ∞, for each ν ∈ R. De�ne the ψ-autoregressive function
mψ by the requirement that

E{ψ(Xi −mψ(Xi−1)) | Xi−1} = 0 a.s. (4)

Throughout we shall assume that the underlying process is ergodic, the nonstationary
distribution Fi of the Xi's is continuous and that

sup
i
Eψ2(Xi −mψ(Xi−1)) <∞. (5)

For that, we consider an empirical process such that under H0 this process depends
of a parameter θ0. First, we start by estimating the parameter and we prove that the
empirical process converges in distribution to a certain centered Gaussian process when
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the parameter is replaced by its estimator θ̃n. Under H1,n, the empirical process converges
in distribution to a noncentered Gaussian process which has the same limit covariance
function. Consider the nulle hypothesis H0 : mψ(·) = m(·; θ0) for some θ0 ∈ Θ.

Let θ̃n be a consistent estimator of θ0 under H0 based on {Xi}i≥0. De�ne

R∗n,ψ(x) = n−1/2
n∑
i=1

ψ(Xi −m(Xi−1; θ̃n))1l{Xi−1≤x}, x ∈ Rd. (6)

The process R∗n,ψ is a marked empirical process, where the marks, or the weights at Xi−1,

are now given by the ψ-residuals ψ(Xi −m(Xi−1; θ̃n)). It is uniquely determined by the
{Xi−1} and these residuals and vice versa. Tests for H0 can be based on an appropriately
scaled discrepancy of this process. Let εi = Xi −mψ(Xi−1), i ∈ N, be the innovations of
our model which are a sequence of absolutely regular random variables satisfying (1). We
are ready to state our �rst result. The main results will be to prove the weak convergence of
the process R∗n,ψ with respect to the Skorohod topology under some reasonable conditions
and to investigate the power of tests based on R∗n,ψ.

2 Conditions and weak convergence of the marked em-

pirical process

For simplicity, we now suppose d = 1. We know that the process de�ned in (6) takes its
values in the Skorohod space D(−∞,∞) and the convergence in this space is equivalent
to the weak convergence on compacts. This excludes the possibility of handling goodness-
of-�t statistics such as supx∈R |R∗n,ψ(x)|. To also deal with such statistics, we continuously
extend R∗n,ψ to −∞ and ∞ by setting : R∗n,ψ(−∞) = 0, R∗n,ψ(x) is de�ned by (6) for

x ∈ R and R∗n,ψ(∞) = n−1/2
∑n

i=d ψ(Xi −m(Xi−1; θ̃n)). Then R∗n,ψ becomes a process in
D[−∞,∞], which, modulo a continuous transformation, is the same as D[0, 1]. Consider
the sequence of distribution functions {F n}n≥1 de�ned by F n = n−1

∑n
i=1 Fi. For the

behavior of the process R∗n,ψ de�ned in (6), some regularity assumptions on the estimator

θ̃n will be needed. These conditions are similar to those of Koul and Stute [1] but our
sequence Xi is nonstationary and geometrically absolutely regular, rather than being
iid.
Condition 1. Under H0, that is m = m(·; θ0) for some unknown θ0 in Θ, θ̃n admits

an expansion : n1/2(θ̃n − θ0) = n−1/2
∑n

i=1 l(Xi, Xi−1; θ0) + op(1) for some vector-valued
function l such that
(a) supiE{l(Xi, Xi−1; θ0)|Xi−1} = 0 for any i ≥ 1
(b) Li,j = E{l(Xi, Xi−1; θ0)l

′(Xj, Xj−1; θ0)} exists for all i, j ≥ 1.
Condition 2. (a) m(x; θ) is continuously di�erentiable at each θ in the interior set Θ0 of
Θ. Put

g(x; θ) =
∂m(x; θ)

∂θ
=
(
g1(x; θ), . . . , gp(x; θ)

)′
(7)
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(b) there exists an {Fi}i≥1 and F -integrable function M(x) such that∣∣gj(x; θ)
∣∣ ≤M(x), for all θ ∈ Θ and 1 ≤ j ≤ p. (8)

Condition 3. There exists a functionm from R×Θ to Rq such thatm(.; θ0) is measurable
and satis�es the following : for all k <∞,

sup
1≤i≤n

sup
n1/2‖t−θ0‖≤k

n1/2|m(Xi−1; t)−m(Xi−1; θ0)− (t− θ0)′m(Xi−1; θ0)| = op(1) (9)

and
sup
i
E‖m(Xi−1; θ0)‖2+δ <∞, for some δ > 0. (10)

Theorem 1. Under H0, assume that for any u ∈ [0, 1],

sup
i≥1

E
(
|ψ(Xi−m(Xi−1))|2+γ0 | Ui−1 = u

)
< CE

(
|ψ(X̃1−m(X̃0))|2+γ0 | Ũ = u

)
<∞, γ0 > 0,

where Ui−1 = F n(Xi−1), 1 ≤ i ≤ n, Ũ = F (X̃), C is some positive constant and the
conditions (1) and (2) hold and let Conditions 1, 2 and 3 be satis�ed, then R∗n,ψ → R∗∞,ψ
in distribution in the space D[−∞,∞], where R∗∞,ψ is a centred Gaussian process with
covariance function

K∗ψ(x, y) = Kψ(x, y) + G′(x; θ0)
(
L1,1(θ0) + 2

∞∑
k=1

L1,k(θ0)
)
G(y; θ0)

−G′(x; θ0)
∞∑
k=0

E
(
1l{X̃0≤x}ψ(X̃1 −m(X̃0; θ0))l(X̃k+1, X̃k; θ0)

)
−G′(y; θ0)

∞∑
k=0

E
(
1l{X̃0≤y}ψ(X̃1 −m(X̃0; θ0))l(X̃k+1, X̃k; θ0)

)
, (11)

where G(x; θ) =
(
G0(x; θ), . . . ,Gp(x; θ)

)′
, Gj(x; θ) =

∫ x
∞ gj(u; θ)dF (u), 0 ≤ j ≤ p and

Kψ(x, y) = F (x ∧ y)V ar(ψ(X̃1)) + 2
∞∑
k=1

Cov(ψ(X̃1), ψ(X̃1+k))F̃k(x, y), (12)

3 The testing procedure

From the results obtained in Theorem 1, some testing procedure can be derived. We
can consider the Cramér-von Mises type test de�ned by

Tn =

∫
(R∗n,ψ(x))2ω(F̂n(x))dF̂n(x), (13)
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where ω is a weight function and F̂n is the empirical distribution function of the random
vectorsXd, . . . ,Xn. We easily deduce that under the conditions of Theorem 1, Tn converges
in law to T =

∫
(R∗∞,ψ(F−1(u)))2ω(u)d(u). We remark that Tn can be also written as

Tn =
1

n

n∑
i=d

ω(F̂n(Xi−1))

{ n∑
j=d

ψ(Xj −m(Xj−1; θ̃n))1l{Xj−1≤Xi−1}

}2

.

The tails probability of the limiting distribution of the Cramer-von Mises test statistics
would be very di�cult to compute. That is why it is necessary to proceed to a discretiza-
tion of T like in Ngatchou-Wandji [2], Ngatchou-Wandji and Harel [4].

As in Ngatchou-Wandji [2], the discretization that we can propose, follows from the
Karhunen-Loève expansion of the processes T . Denote by W (·) = R∗∞,ψ(F−1(·)) the pro-
cess de�ned on [0, 1]d. Its Karhunen-Loève expansion can be written asW =

∑∞
j=d λ

1/2
j Wjfj,

where λd ≥ λd+1 ≥ . . . are the eigenvalues of the covariance operatorBψ(·) = K∗ψ
(
F−1(·), F−1(·)

)
which are supposed strictly positive, the sequence of functions fd, fd+1, . . . is a complete
orthonormal base for L2[0, 1]d of eigenvectors of the operators of the operator Bψ and the

random variables Wj = λ
−1/2
j

∫ 1

0
W (v)fj(v)d(v) are independent N (0, 1) under H0.

Then it is possible to choose a test statistic on the form T Jn =
∑J

j=dW
2
n,j, where J > 1

is the number of the more informative terms in the development (12) and for any j ≥ 1

Wn,j = λ
−1/2
j n−1

n∑
i=d

R∗n,ψ(Xi−1)ω(F̂n(Xi−1))fj(F̂n(Xi−1)).

Under H0, T Jn converges is law to T J =
∑J

j=dW
2
j which has asymptotically a chi-square

distribution with J degrees of freedom. However, the λ′js and f
′
js are di�cult to compute

in practice. A way to overcome this di�culty was suggested by Ngatchou-Wandji [2,3] by
approximating the integrals by discretization.

4 Applications to the AR-ARCH model

Now we apply the results of Section 3 to test an AR-ARCH model against an other
AR-ARCH model. Consider a model which can be written in the form

Xi = m(Xi−1, . . . , Xi−d; θ) + v(Xi−1, . . . , Xi−d)εi, i ≥ 1 + d, (14)

where θ ∈ Θ ⊂ Rp a proper parameter set, m(·) satisfying Conditions 2 and 3 and v(·)
continuous are unknown.

Let {Xi−1}i≥1+d denotes the random sequence of vectors in Rd de�ned by

Xi−1 = (Xi−1, . . . , Xi−d)
′, i ≥ 1 + d.
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We suppose that the sequence {Xi−1}i≥1+d satis�es the conditions (1) and (2) in the
introduction and {εi}i≥1+d is sequence of absolutely regular random variables satisfying
(1). Formula (14) can be written as Xi = m(Xi−1; θ) + v(Xi−1)εi, i ≥ 1 + d.
We will use the results of Section 3 to test :
H0 : m(·; θ) ∈M versus the sequence of alternatives H1,n : m(·; θ) ≡ mn ∈M1,n.

We want to test the hypothesis H0 : m(·; θ) ∈ M against the local alternatives H1,n :
m(·; θ) = m(·; θ) + n−1/2r(·), θ ∈ Θ, where r is a function which has the same properties

as v and E(r(X̃1)) 6= 0.

Theorem 2. Assume that supi≥1+dE
(
|v(Xi−1)εi|2+γ0

)
< ∞ and E

(
|v(X̃d)ε1+d|2+γ0

)
<

∞ hold and that Conditions 1, 2 and 3 also hold. Then under H0, R∗n,ψ → R∗∞,ψ in
distribution in the space Dd[−∞,∞], where R∗∞,ψ is a centred Gaussian process with
covariance function

K∗ψ(x,y) = Kψ(x,y) + G′(x; θ0)
(
L1,1(θ0) + 2

∞∑
k=d

L1,k(θ0)
)
G(y; θ0)

−G′(x; θ0)
∞∑

k=d−1

E
(
v(X̃d)ε1+dl(X̃k, X̃k+1; θ0)

)
−G′(y; θ0)

∞∑
k=d−1

E
(
v(X̃d)ε1+dl(X̃k, X̃k+1; θ0)

)
, (15)

Corollary. Under H1,n, and the conditions of Theorem 1, R∗n,ψ → R∗∞,ψ in distribution in
the space Dd[−∞,∞] where R∗∞,ψ is a Gaussian process with mean s(x) and covariance
function K∗ψ(x,y) de�ned in (15), where

s(x) =

∫
h≤x

r(h)dF (h)−G(x; θ0)

∫
h≤x

∫
R

r(h)

v(h)
l(h, y; θ0)dF̃ (h, y)

and v(·) continuous are unknown.
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