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Résumé. Les arbres de régression et de classification sont devenus très populaires
dans les trente dernières années. L’application historique de cette technique concerne
l’estimation non-paramétrique d’une espérance conditionnelle, en fonction de certains fac-
teurs de risque représentés par des covariables. Nous adaptons ici cette méthode au cas
de données de survie, pour lesquelles la problématique de censure des données doit être
traitée. Les propriétés de ces estimateurs par morceaux sont étudiées, et des résultats
théoriques permettent de conclure sur la vitesse de convergence de tels estimateurs. Ces
résultats sont ensuite validés par une étude simulatoire, puis deux applications sur données
réelles en assurance sont proposées afin d’illustrer l’intérêt de la méthode.

Mots-clés. poids Kaplan-Meier, censure, arbre de régression.

Abstract. The use of regression trees as a tool for high-dimensional classification and
regression problems has boomed in the last thirty years. Initially designed to estimate
non-parametrically the conditional mean of a response given some covariates, this popular
technique is here adapted to deal with survival data. We derive key non-asymptotic results
and almost sure convergence rates for tree-based estimators provided by the growing step,
as well as convergence properties of the associated selection process. Our theoretical
results are confirmed by a simulation study and two applications on real-life datasets to
illustrate the utility of such a method in practice.

Keywords. Kaplan-Meier weights, censored observations, regression tree.

1 A weighted CART algorithm

In numerous applications of survival analysis, analyzing the heterogeneity of a population
is a key issue. For example, in insurance, a strategic question is to determine clusters of
individuals which represent different levels of risk. Once such groups have been identi-
fied, it becomes possible to improve pricing, reserving or marketing targeting. We show
here how to adapt CART methodology (Classification And Regression Trees, Breiman et
al (1984)) to a survival analysis context, with such applications in perspective. The main
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question we face is the presence of censoring that may affect some duration variable, and
the necessity to correct the bias it introduces in the statistical methods. Such duration
variables naturally appear in the situations we consider, either because we are studying
lifetimes or because they are related to the time before a claim is fully settled.

In the sequel, we consider a duration variable T ∈ R+, a censoring variable C ∈ R+,
and a random vector M ∈ Rk, and define the observations

Y = inf(T,C),

δ = 1T≤C ,

N = δM.

Moreover, let X ∈ X ⊂ Rd denote a set of random covariates that may have impact on T
and/or M. The observations that we consider in the following are the i.i.d. replications
(Ni, Yi, δi,Xi)1≤i≤n, where the variables Mi correspond to quantities that are observed
only when the individual i is fully observed. The classical censored regression framework
can be seen as a special case, taking k = 1 and M = T.

Our aim is to understand the impact of X, and possibly T, on M. More precisely, we
wish to estimate a function

π0 = arg min
π∈P

E [φ(M,π(X, T ))] ,

where P is a subset of an appropriate functional space and φ a loss function. Under
appropriate assumptions, we know that∫

ψ(m, t,x) dF̂ (m, t,x) =
1

n

n∑
i=1

δiψ(Ni, Yi,Xi)

1− Ĝ(Yi−)
, (1)

is a consistent estimator of E[ψ(M,T,X)], with Ĝ being a Kaplan-Meier estimator of the
censoring distribution. Our approach is thus based on the IPCW method, see van der
Laan and Robins (2003) chapter 3.3. It consists in determining a weighting scheme that
compensates the lack of complete observations in the sample.

We first explain how the CART algorithm can be adapted to the presence of censoring.
The building procedure of a regression tree is based on the definition of a splitting criterion
that furnishes partition rules at each step of the algorithm. More precisely, at each step s, a
tree with Ls leaves is constituted. These terminal nodes represent disjoint subpopulations
of the initial n observed individuals. The rules used to create these populations are
based on the values of T and X. That is, the leaves provide us with a partition of the
space T = R+ × X into Ls disjoint sets T (s)

1 , ..., T (s)
Ls

. The individual i belongs to the

subpopulation of the leaf l if X̃i := (Ti,Xi) ∈ T (s)
l .

At step s+1, each leaf is likely to become a new node of the tree by making use of the
splitting criterion. Let X̃(j) denote the j−th component of X̃. In absence of censoring,
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to partition the subpopulation of the l−th leaf into two subpopulations, one determines,
for each component X̃(j), the threshold x

(j)
l that minimizes

min
π∈R


∫
φ(m,π)1

x̃∈T (s)
l

1
x̃(j)≤x(j)l

dF̂n(m, t,x)∫
1
x̃∈T (s)

l
1
x̃(j)≤x(j)l

dF̂n(m, t,x)

+

∫
φ(m,π)1

x̃∈T (s)
l

1
x̃(j)>x

(j)
l
dF̂n(m, t,x)∫

1
x̃∈T (s)

l
1
x̃(j)>x

(j)
l
dF̂n(m, t,x)

 =: Ll(j, x
(j)
l ), (2)

where F̂n denotes the empirical distribution of (M,T,X). Then one determines j0 =

arg minj Ll(j, x
(j)
l ). Next, the partition of the population of the l−th leaf is performed by

separating the individuals having X̃
(j0)
i ≤ x

(j0)
l , and those such that X̃

(j0)
i > x

(j0)
l . Here,

the empirical distribution function F̂n is unavailable but the idea is to replace F̂n in (2)
thanks to (1). To build the maximal tree in practice, the CART algorithm thus becomes:

Step 0: compute the estimator Ĝ from the dataset with n individuals.
Step 1: initialization. Consider the tree with only one leaf (L1 = 1), corresponding

to the whole population. Set T (1)
1 = T .

Step s: splitting. Consider the tree obtained at step s− 1, with Ls−1 leaves. Each

leaf l corresponds to a set T
(s−1)
l such that T (s−1)

l ∩ T (s−1)
l′ = ∅ and ∪lT (s−1)

l = T . The

uncensored observations (denote by el their number) such that X̃ ∈ T (s−1)
l are assigned

to leaf l. For each leaf l, with 1 ≤ l ≤ Ls−1:

s.1 if el = 1 or if all observations have the same values of X̃, do not split;

s.2 else, determine j0 and x
(j0)
l that minimizes Ll(j, x

(j)
l ) given in (2) and define Ll =

T (s−1)
l ∩ {X̃(j0) ≤ x

(j0)
l }, and Ul = T (s−1)

l ∩ {X̃(j0) > x
(j0)
l }.

Define a collection of disjoints sets T (s)
l′ which consists of the sets Ll, Ul for 1 ≤ l ≤ Ls−1

(or T (s−1)
l if the l−th leaf satisfied the condition s.1). Set Ls the new number of leaves.

Go to step s+ 1, unless Ls = Ls−1.
At the end of this process, we thus get the piecewise constant tree-based estimator

π̂K(x, t) =
K∑
l=1

γ̂lRl(t,x),

where K denote the total number of leaves, with each leaf l associated to a set Tl and a
rule Rl(x̃) = 1x̃∈Tl , and

γ̂l = arg min
π∈R

∫
φ(m,π)Rl(x̃) dF̂ (m, t,x)∫

Rl(x̃) dF̂ (m, t,x)
.
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The coefficient γ̂l can be seen as an estimator of γl = arg minπ∈RE[φ(M,π) | X̃ ∈ Tl].
In the rest of the paper, we show the consistency of using such a procedure for building

the estimator of π0. A part of the paper is dedicated to the pruning step, and the study of
the penalization to be applied to this estimator in order to integrate the model complexity.

Finally, a simulation study as well as two real-life applications are proposed. The
former allows us to confirm the convergence of the estimator towards to quantity of
interest, illustrated by Table 1. In this simulation study, a mixture of four components
is artificially generated and the goal is to see whether the regression tree uncovers this
structure. In the real-life examples, we first compare the performance of Cox predictions
and tree-based ones for income protection insurance purposes, and check that the tree-
based estimators globally gives better results than the other one. Lastly, another example
from medical cares shows how to adapt the regression tree method to the prediction of
unobserved claim amounts, which is the special scheme that was described in introduction.
This particular situation requires to fit two different regression trees in order to make the
ratio of their predictions.
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% of Sample Group-specific MWSE Global
censored size Group 1 Group 2 Group 3 Group 4 MWSE

observations n MWSE MWSE MWSE MWSE
100 0.19516 0.42008 0.17937 0.30992 1.10454
500 0.03058 0.07523 0.03183 0.06029 0.19796

10% 1 000 0.01509 0.03650 0.01517 0.02619 0.09306
5 000 0.00295 0.00714 0.00289 0.00530 0.01804
10 000 0.00105 0.00378 0.00117 0.00292 0.00910

100 0.20060 0.43664 0.17448 0.29022 1.10765
500 0.03736 0.07604 0.04301 0.06584 0.22217

30% 1 000 0.01748 0.04095 0.01535 0.02674 0.10043
5 000 0.00319 0.00758 0.00291 0.00547 0.01904
10 000 0.00117 0.00372 0.00125 0.00292 0.00930

100 0.19784 0.45945 0.17387 0.28363 1.11476
500 0.04906 0.08993 0.05301 0.06466 0.25668

50% 1 000 0.02481 0.05115 0.01788 0.03004 0.12387
5 000 0.00520 0.00867 0.00389 0.00516 0.02299
10 000 0.00153 0.00407 0.00162 0.00308 0.01057

Table 1: Mean weighted squared errors depending on the censoring rate and sample size.

4


