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Résumé. C’est une frustration perpétuelle pour les statisticiens et des scientifiques : Des 

modèles complexes avec des multiples entrées et sorties sont difficiles à visualiser ; et 

communiquer par rapport à la signification statistique et l’interprétation scientifique n’est pas du 

tout évident.  

Ici nous étudions la transition d’une visualisation qui montre l’effet de plusieurs variables X sur 

une seule variable de réponse Y vers deux classes de graphiques à deux réponses, les squelettes et 

les tapis volants. Ensuite nous montrons comment l’incertitude par rapport aux données et modèles 

peut être intégrée.  

Mots-clés. Surface de réponse, analyse multivariée. 

 

Abstract. It iss a long-lasting frustration to statisticians and scientists: Non-trivial models 
with multiple input and output variables are hard to visualize, and communication about 
statistical significance and scientific meaning is far from obvious. Here we are studying the 
transition from single response displays in which the effects of multiple X variables are shown 
for a singe Y variable towards two classes of dual response graphs: skeletons and flying 
carpets and then explore how uncertainty of the model can be integrated. 

Keywords. Response surfaces, multivariate analysis. 

 

1 Skeletons, Flying Carpets, and Ridge Gymnastic Visualizing Models with 

Multiple X and Y Variables 

Let us start with a practical example. Polyurethane foams used to make mattresses are the result of a 

simple chemical reaction. In this chemical reaction, a generalized alcohol called a polyol, reacts 

with isocyanate to form an elastic polymer. At the same time, water also reacts with isocyanate and 

forms urea and CO2. The urea disperses in the polymer and hardens it, whereas the CO2 forms 

bubbles which at some time burst into each other to form a breathable foam. Parameters which 

define the characteristics of the product include hardness, density, tensile strength, and elongation at 

break. The first two parameters are related to the general hardness and price class of the foam, the 

second pair to its elastic properties.  



Although, the chemistry is quite simple, there are nevertheless a considerable number of variables 

which determine the foam characteristics. There is the quantity of isocyanate. It is commonly chosen 

in slight excess to ensure full reaction. Excess isocyanate then dissolves into the urea domains. 

Furthermore, the amount of water with respect to polyol at equivalent excess isocyanate will create 

more gas which makes more and larger bubbles and therefore lower density foam. At the same time, 

the remaining polymer will be harder since it contains more urea. At the same time, less dense 

foams have less polymer to hold up the foam and are in general softer.  

Further factors determine the characteristics of the product. Additional solids can be added to 

harden the foam, auxiliary gas generating materials can further reduce density, flame retardants may 

be needed to pass safety regulation, and air pressure and humidity affect the outcome. This means 

that the number of input variables and responses and the complexity of the relationship is 

sufficiently high to make analyzing the relationship quite tricky. 

The following graph is an attempt to show how the three most important variable affect the 

outcome: 

 

Figure 1. Single response graph for IFD hardness of the models presented by R. Schiffauer [1]. 

This is a single response graph with multiple input variables. Note that the relationships and their 

relative sizes can be seen for each variable, and one can also compare them. However, no clear 

summary picture appears. It is also difficult to imagine how to integrate more input variables and 

how to show interaction effects. Finally, since we wish to understand how the inputs affect multiple 

responses, several of these graphs have to be studied simultaneously.  

Many of us can recall hours of explaining such sets of graphs to the scientists with whom we, 

statisticians, are collaborating and for whom we have constructed these models. 



A first alternative is the skeleton plot for two responses as shown in the example below 
(Figure 2). Here, one first seeks a hierarchy among the X variables. As a backbone, one selects 
the variable which has the strongest joint effect on both responses. In the example, this is the 
water content. Then the effects of other variables are grafted onto the backbone. Variables 
which show little or no interaction with the backbone variable are grafted once, variables 
which interact with the backbone variable are grafted twice. Higher order interactions can be 
added as ‘bones’ grafted at a second level (this is not shown here).  

As a result, we obtain a display of a very complex situation in a way, which remains 
interpretable to scientists. In the example, the backbone is perfectly logical: As the water level 
increases, the foam becomes less dense (more gas) and softer (less substance). Yet, more 
water also means harder polymer. Higher isocyanate excess (index) or additional solids, 
increase hardness with little or no effect on density and their effects are a bit different at high 
density foams made with little water (urea) than at low density foams with a high urea 
content. Auxiliary blowing agents (here MeCl) and air pressure act in logical and opposite 
ways … We see, main relationships, although complex can be readily explained and in a way 
which is much easier and clearer than via a pair of single response graphs. 

 

Figure 3. Skeleton graph of IFD hardness and density based on the models published by R. Schiffauer [1]. 

The following pair of graphs show a view of two skeleton plots which allow to explore the four 
responses simultaneously. This display shows at the same time the strength of the method 
and identifies one difficulty: The backbone of one skeleton graph may not be ideal for another, 
made for different pair of responses. Developing methods for choosing this variable 
automatically still need to be designed. 



 

Figure 4. A pair of skeleton plots for the same input variables. 

Skeletons help in picturing input output relationships, their sizes, and their interactions. They 
do not display range of properties which can be attained (under the condition that the model 
holds). A skeleton lacks flesh. Fleshing out the skeletons means that we have to increase the 
dimension of the bones to at least 2 and this gets us to flying carpets. A challenge for this 
display is to identify an anchor point in a visually non-intrusive way.  

 

 

Figure 5. Fleshing out the backbone representing the water effect by the effect of isocyanate index. 

And when there are three input variables, how should we proceed? There are two 
possibilities: We could go from a two dimensional object (manifold) to a three dimensional 
one, or we could repeat two dimensional objects. That is, we could go to displays of flying 
sausages or to multiple flying carpets. The first approach is based on an optical illusion: 
representing a three dimensional object by showing a visually annotated two dimensional 
shape. This is very hard to do and also hard to view. The second approach leads to easier 
displays at the levels of construction and viewing. 



  

And this is about where it ends. Here we show two responses and four input variables to 
picture the property range in density and hardness which can be covered by the selected 
formulation range. Skeleton plots can accommodate a few more variables than arrangements 
of manifolds (flying carpets). In the example, we have six input variables and two responses. 
These two types of displays are in the following sense optimal: They greatly improve over 
single response displays by showing more variables and more relationships in a way which is 
easier to understand. On the other hand, it is not possible to show three responses in a single 
display since this requires using the illusion of depth. For the same reason, the number of 
dimensions which can be used in the display object cannot exceed two.  

Going beyond two responses requires showing arrangements of two dimensional projections 
or animation of the graphs.  

Up to now, we have introduced and discussed skeleton graphs in the case of a known model. 
In practice, models have to be constructed from data and their parameters are subject to 
uncertainty. How can one integrate uncertainty with respect to the model and the data? 

For this purpose, we shall revisit a complex example reported box Box and Liu [2]. It concerns 
data collected in the optimization stage in the process of designing paper helicopters which fly 
when dropped from a bench and whose flight variability is low. There are two responses, 
flight time in centi-seconds denoted by Y and a measure of variability, 100*log10(stdev(Y)), 
denoted by LS. There are four input variables, wing area (A), wing length/width ratio (Q), 
body length (L), and body width (W). The experimental design was a blocked central 
composite in these four factors.  

The following set of dual response display (a mix of flying carpets and skeletons) shows a way 
of displaying raw data and main patterns. The top left graph shows slices made for the two 
variables which have the largest overall linear effects, body length (L) and wing length/width 
ratio (Q). We see a tendency for helicopters with higher wing length/width ratio to fly longer 
at the expense of variability. For the body length, shorter seems better (note that ‘long’ or 



‘short’ are with respect to the chosen experimental ranges. When we blend the linear fits with  
fits of a full model (including interactions and quadratic terms), we see that the slices separate 
and become quite irregular when only the full model is shown. The full model over-fits and a 
reasonable fit is probably somewhere in the middle.  
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Figure 6. Raw data and models. Top left: linear effects only, slices in wing and body length. Top right: mix 
of 0.8parts linear and 0.2 parts full model. Bottom left: even mix of linear and full model, bottom right: 
full model. 
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