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Résumé. Les mélanges non-paramétriques font l’objet de nombreux travaux récents,
portants sur la détermination de modèles identifiables ainsi que de méthodes d’estimation
souvent fondées sur le principe de l’algorithme EM. Ces modèles sont plus flexibles que
les mélanges paramétriques car les densités des composantes y sont semi- ou totalement
non-paramétriques. Dans le cas d’observations multivariées, l’hypothèse communément
posée afin d’assurer l’identifiabilité consiste à admettre que les coordonnées sont indépen-
dantes, conditionnellement à la sous-population de provenance des individus. Or dans
de nombreux cas cette hypothèse n’est pas raisonnable. Nous proposons ici un nouveau
modèle de mélange multivarié, dans lequel les densités des composantes sont composées de
blocs indépendants conditionnellement à la sous-population, mais eux-mêmes multivariés
et non-paramétriques. Ce modèle est identifiable, et nous définissons un algorithme de
type “EM non paramétrique” incluant une stratégie de choix de fenêtres, afin d’en estimer
les paramètres. Les performances de ce modèle et cet algorithme sont illustrés au travers
de simulations et d’une étude sur un jeu de données réel pour un objectif de classification.

Mots-clés. Algorithme EM, Estimation non paramétrique de densité multivariées,
Mélanges non-paramétriques multivariés.

Abstract. Recent works in the literature have proposed models and algorithms for
nonparametric estimation of finite multivariate mixtures. In these works, the model as-
sumes independent coordinates, conditional on the subpopulation from which each obser-
vation is drawn, so that the dependence structure comes only from the mixture. Here, we
relax this assumption, allowing in the multivariate observations independent multivariate
blocks of coordinates conditional upon knowing which mixture component from which
they come. Otherwise their density functions are completely multivariate and nonpara-
metric. We check that this new model is identifiable, and propose an EM-like algorithm
for the statistical estimation of its parameters. We then derive some strategies for se-
lecting the bandwidth matrix involved in the nonparametric estimation step of it. The
performance of this algorithm is illustrated through several numerical simulations. We
also experiment this new model and algorithm on an actual dataset from the model based,
unsupervised clustering perspective, to illustrate its potential.

Keywords. EM algorithm, multivariate kernel density estimation, multivariate mix-
ture, nonparametric mixture.
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1 Introduction
The most general model for nonparametric multivariate mixtures is as follows: suppose
the vectors X1, . . . ,Xn are a simple random sample from a finite mixture of m > 1
arbitrary distributions. The density of each X i may be written

gθ(xi) =
m∑
j=1

λjfj(xi), (1)

where xi ∈ Rr, and θ = (λ,f) = (λ1, . . . , λm, f1, . . . , fm) denotes the parameters of the
statistical model. In this model λj denotes the proportion (weight) of component j in
the population; the λj’s are thus positive and

∑m
j=1 λj = 1. The fj’s are the component

densities, drawn from some family of multivariate density functions F absolutely contin-
uous with respect to Lebesgue measure, and the term “nonparametric” means that no
parametric assumptions are made about the form of the fj’s.

Model (1) is not identifiable if no restrictions are placed on F , where “identifiable”
means that gθ has a unique representation of the form (1) and also that we do not
consider that “label-switching” — i.e., reordering the m pairs (λ1, f1), . . . , (λm, fm) —
produces a distinct representation. The common restriction placed on F in a number
of recent theoretical and algorithmic developments in the statistical literature, since its
introduction by Hall and Zhou (2003), is that each joint density fj(·) is equal to the
product of its marginal densities. In other words, the coordinates of the X i vector are
independent, conditional on the subpopulation or component (f1 through fm) from which
X i is drawn. Therefore, model (1) becomes

gθ(xi) =
m∑
j=1

λj

r∏
k=1

fjk(xik). (2)

For the multivariate model (2), an empirical “EM-like” (npEM) algorithm for statistical
estimation of its parameter has been introduced in Benaglia et al. (2009).

In this work, we relax the assumption underlying model (2) by assuming that each joint
density fj is equal to the product of B < r multivariate densities that will correspond
to independent multivariate blocks, conditional on the subpopulation from which each
observation is drawn. Let the set of indices {1, ..., r} be partitioned into B disjoint subsets
sl, i.e. {1, ..., r} =

⋃B
l=1 sl, where B is the total number of such blocks, and dl is the number

of coordinates in lth block, i.e. lth block dimension. Here, the indices i, j, k and l denote
a generic individual, component, coordinate, and block, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r
and 1 ≤ l ≤ B (m, r,B and n stand for the number of mixture components, repeated
measurements, blocks, and the sample size). Then model (1) becomes

gθ(xi) =
m∑
j=1

λj

B∏
l=1

fjl(xisl), (3)
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where xisl = {xik, k ∈ sl} is the multivariate variable which have its coordinates in lth
block and multivariate density function fjl. This is a main difference in comparison to
model (2): here the dependence structure does not come only from the mixture struc-
ture; some additional within-block dependence is allowed. This model thus brings more
flexibility with respect to the conditional independence assumption. From a modelisation
perspective, the way to choose these blocks depends on the structure of the data, see the
example in Section 3. In view of Allman et al. (2009), the fundamental result of identifi-
ability is established for model (2) if r ≥ 3, regardless of m. We check that this result is
indeed generalized to model (3) where at least three multivariate blocks are independent,
conditioned on the latent structure.

2 Estimating the parameters
The algorithm we propose is an extension of the original npEM algorithm that was designed
for estimation in the multivariate mixture model (2). The EM principle is first applied in
the E-step, i.e. computation of the posterior probabilities given the current value θ(t) of
the whole parameter. The EM machinery is also applied straightforwardly for the M-step
of the Euclidean part that are only the weights λ. Then a nonparametric Weighted Kernel
Density Estimation (WKDE) is applied to update the component densities per blocks.
The main difference is that in this model, we need multivariate density estimates. This
is also where this algorithm becomes “EM-like”, since kernel density estimation is not a
genuine maximization step.

In finite mixture models, the complete data associated with the actually observed
sample x is (x,Z), where to each individual (multivariate) observation xi is associated
an indicator variable Zi denoting its component of origin. It is common to define Zi =
(Zi1, . . . , Zim), the indicator variables Zij = I{observation i comes from component j},∑m

j=1 Zij = 1. From (1), this means that Pθ(Zij = 1) = λj, and (X i|Zij = 1) ∼ fj,
j = 1, ...,m.

The mvnpEM algorithm. Given initial values θ(0) = (λ(0),f (0)), the algorithm consists
in iterating the following steps:

1. E-step: Calculate the posterior probabilities (conditional on the data and θ(t)), for
each i = 1, . . . , n, j = 1, . . . ,m, and where f (t)

j (xi) =
∏B

l=1 f
(t)
jl (xisl),

p
(t)
ij := Pθ(t)(Zij = 1|xi) =

λ
(t)
j f

(t)
j (xi)∑m

j′=1 λ
(t)
j′ f

(t)
j′ (xi)

. (4)
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2. M-step for λ:

λ
(t+1)
j =

1

n

n∑
i=1

p
(t)
ij , j = 1, . . . ,m. (5)

3. Nonparametric kernel density estimation step: For any u in Rdl , define for
each component j ∈ {1, . . . ,m} and block l ∈ {1, . . . , B},

f
(t+1)
jl (u) =

1

nλ
(t+1)
j

n∑
i=1

p
(t)
ij KHjl

(u− xisl), (6)

where, for u ∈ Rdl , KHjl
(u) = |Hjl|−1/2K(H

−1/2
jl .u), K is a multivariate kernel

function typically Gaussian, Hjl is a symmetric positive definite dl × dl “bandwidth
matrix”, that may depend on the lth block and jth component, and even on the tth
iteration, as briefly precise below.

Bandwidth selection in multivariate KDE. The central decision in the nonpara-
metric density estimation step of both the npEM and mvnpEM algorithm is the selection of
an appropriate value for the (scalar or matrix) bandwidth or smoothing parameter. We
restrict ourselves to diagonal bandwidth matrices in this work. Firstly, as in Benaglia
et al. (2009) it is possible to simply use a single fixed bandwidth for all components
per coordinate within each block, selected by default according to a rule of thumb from
Silverman (1986). Secondly, we investigate a often more appropriate strategy defining
iterative and per component and coordinate bandwidths by adapting Silverman’s rule of
thumb as in Benaglia et al. (2011). There, the scalar bandwidths for each coordinates
in the block depend also on component j and current algorithm iteration t through the
posterior probabilities p(t)ij ’s, that are used to compute weighted interquartile range and
standard deviations involved in Silverman’s rule.

3 Implementation and examples
Initialization of the mvnpEM algorithm. To initialize the algorithm, the first E-
step requires initial values for the f (0)

j ’s which themselves require an initial n×m matrix of
posteriors (p(0)ij ). To obtain this matrix, we apply, like in other EM-strategies, a k-means
algorithm to get a first clustering of the data.

Monte-Carlo Experiments. We first performed experiments on simulated data and
computed the errors in terms of the square root of the Mean Integrated Squared Error
(MISE) for the densities as in Hall et al.(2005): MISEjl =

1
S

∑S
s=1

∫
(f̂

(s)
jl (u)−fjl(u))2du,

where f̂ (s)
jl is the density estimate at replication s, computed from (6) but using the final
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values p̂ij’s of the posterior probabilities after numerical convergence of the algorithm, and
where the integral is computed numerically. We computed also the mean squared error
(MSE) for the m − 1 proportions that are the only scalar parameters in these models.
For instance the MSE for the proportion of component 1 is MSEλ1 =

1
S

∑S
s=1(λ̂

(s)
1 −λ1)2,

where λ̂(s)1 is computed using (5) together with the final posterior probabilities p̂ij’s. Note
that we computed and provided as well MSE’s for other scalar measures of precision
(means, variances,. . . ) that are not genuine parameters of the model.

Several models have been tested, and we just give here brief results from one model
with r = 6 variables, m = 2 components with λ1 =30 %, and 3 blocks of bivariate
(dl = 2) Gaussian densities with some covariance structure. The adaptive bandwidth
strategy proved its superiority over the fixed bandwidth strategy in this particular model.
In addition, all the MSE’s and MISE’s decrease when the sample size n increases, as
expected. For brevity, a single output concerning one situation is displayed in Fig.1.
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Figure 1: Square roots of MISE’s for the densities and square roots of MSE’s for the pa-
rameters as a function of the sample size n, S = 300 replications, k−means initialization,
and the adaptive bandwidths settings.. Lines types in grey correspond to same types but
per-component colored, as indicated in the plots.

An example on actual data We consider a real dataset from an experiment involving
n = 569 instances of Wisconsin Diagnostic Breast Cancer (WDBC). This database is
available through the UW CS ftp server1. The details of the attributes found in WDBC

1ftp.cs.wisc.edu, see math-prog/cpo-dataset/machine-learn/WDBC/
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dataset are: ID number, Diagnosis (M = malignant, B = benign) and ten groups of
three real-valued features that are computed for each cell nucleus. The total number
of attributes is 32 (ID, diagnosis, 30 real-valued input features). In these data, some
features are related to others, so that we can expect dependences apart from any mixture
structure. Some scatterplots also confirm this. We thus applied the mvnpEM algorithm to
model (3) with B = 8 blocks (1 block of size 9 and 7 blocks of size 3), m = 2 components.
Then we used the posteriors after convergence of the algorithm to obtain the correct
classification p and the distribution of Maximum A Posteriori (MAP) strategy given by
each subpopulation; we compared them with a k-means classification where we can see
that the solution of mvnpEM using MAP is better than the k-means strategy. This gave
sensible results in the perspective of unsupervised, model-based clustering.

4 Perspectives
Using a non-diagonal bandwidth matrix is an interesting perspective for future work, to
better recover multivariate and strongly correlated densities. The smoothed EM idea in
Levine et al. (2012) where introduced a smoothed loglikelihood objective function and
developed an iterative algorithm, is also the subject of an ongoing work.
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