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Résumé. On étudie le risque L2-integré, d’un estimateur BlockShrink de la den-
sité de probabilité dans le cas de variables uniformément mélangeantes. En supposant
que les coefficients de mélange uniforme (φ(i))i>0 sont arithmétiquement décroissants,
on démontre que notre estimateur est adaptatif dans une classe d’espace de Sobolev de
régularité inconnue.

Mots-clés. Estimation adaptative, densité, ondelettes, seuillage par block, processus
φ-mélangeant, espace de Sobolev.

Abstract. We study the integrated L2-risk, of a wavelet BlockShrink density es-
timator based on dependent observations. We prove that the BlockShrink estimator is
adaptive in class of Sobolev space with unknown regularity for uniformly mixing processes
with arithmetically decreasing coefficients.

Keywords. Wavelet density estimation, Sobolev space, φ-mixing processes, Block
thresholding.

1 Introduction

The functional estimation by the wavelet methods has been intensively used, these last
years, in various areas. The popularity of these methods comes from the ease of their
implementation, their flexibility, ability to catch details and for their high compression
ratio. In the statistical literature, different types of wavelet estimators have been proposed.
The performance of the first ones depended on the density’s regularity. Later, adaptive
procedures, as thresholding estimators, was developed to construct an estimate which
does not depend on the explicit knowledge of this regularity. Those estimators are to
make a fine selection of the coefficients estimators β̂jk of the wavelets coefficient βjk and
several thresholding techniques, including local, global and block thresholdings, have been
developed.

The idea of block thresholding was introduced by Efroimovich (1985) as part of Fourier
analysis. It has been adapted to the wavelet context analysis by Kerkyacharian et al.
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(1996). The first localized block thresholding estimators has been developed by Hall et
al. (1998, 1999), Cai (1996, 1997, 1999) and Chesneau (2008). The last one studied an
Lp version of the BlockShrink estimator given by Cai (1996) in the iid case. Tribouley
and Viennet (1998) explored the global thresholding method in β-mixing processes. To
our knowledge, the BlockShrink estimator for the density model has not been studied for
dependent processes.

The aim of this work is to extend some results, of BlockShrink estimator, to dependent
processes in L2-norm for the density estimation. The function density f is supposed to
belong to the Sobolev space Hs with compact support. We consider the φ-mixing’s
processes (Ibragimov (1962)) and we study the L2 error convergence for BlockShrink
estimator f bn. We show that BlockShrink estimator is consistent with an optimal rate,
under certain conditions on wavelet basis and mixing coefficients. Precisely we give the
upper bound of the L2-mean error:

E‖f − f bn‖2L2
:= E

(∫ 1

0

|f(t)− fn(t)|2dt
)
≤ Cn−

2s
1+2s .

2 Wavelets and Sobolev space

We consider a wavelet basis on the interval [0; 1] of the form

ζ = {ϕτk, τ ≥ 0; k = 0, . . . , 2j − 1;ψjk, j ≥ τ ; k = 0, . . . , 2j − 1}

In general, ϕjk(x) and ψjk(x) are ”periodic” or ”boundary adjusted” dilation and
translation of a ”father” wavelet ϕ and a ”mother” wavelet ψ, respectively. This last
function is supposed to be N -regular.

For the sake of simplicity, we set ϕjk(x) = 2j/2ϕ(2jx − k) and ψjk = 2j/2ψ(2jx − k).
Let τ be a sufficiently large integer, for any j0 ≥ τ , a function f in L2([0, 1]) can be
expanded in a wavelet series as

f =
2j0−1∑
k=0

αj0kϕj0k +
∑
j≥j0

2j−1∑
k=0

βjkψjk, (1)

where the wavelet coefficients are defined by

αj0k =

∫
f(x)ϕj0k(x)dx et βjk =

∫
f(x)ψjk(x)dx.

Now, let us give a definition of Sobolev space, the main function spaces used in our study.
Let βτ−1,k = ατk. We say that a function f belongs to the Sobolev space Hs if and only
if the associated wavelet coefficients βjk, satisfy
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 ∑
j≥τ−1

22js

2j−1∑
k=0

|βjk|2
1/2

<∞,

where s ∈]0, N + 1[ with N denotes the wavelet regularity (see Meyer 1990).

3 BlockShrink estimator

Let X1, . . . , Xn, n observations from a φ-mixing’s strictly stationary process, with un-
known density f , relative to the Lebesgue measure on R.
The sequence of the mixing coefficients (φ(l))l≥0 is assumed to have an arithmetic decay
(ie : there exists θ > 1 and a constant c > 0 such that for all l ≥ 1 we have φ(l) ≤ cl−θ).
For a simplicity, we assume that f ∈ L2([0.1]), then f admits the following wavelet devel-
opment representation (1) with αj0k = E(ϕj0k(X)) and βjk = E(ψjk(X)), X of density f .
We define the non-linear BlockShrink estimator as proposed by Cai (1996) by:

f bn =
2j0−1∑
k=0

α̂j0kϕj0k +

j1∑
j=j0

∑
K∈Aj

∑
k∈BjK

β̂jkI{b̂jK≥λ}ψjk,

where j0 is an integer chosen so that the linear variance term will not contribute to the
overall error in the same spirit that the integer j1 is chosen to make the bias term negligible
in the overall error. We assume that 2j1 � n

1
2 and 2j0 � (log n)ε with ε > 2. And for

j ∈ {j0, . . . , j1}, we define the sets

Aj = {1, . . . , 2jl−1j } and BjK = {k ∈ {0, . . . , 2j−1}; (K−1)lj ≤ k ≤ Klj−1}, for K ∈ Aj,

where lj is an increasing sequence in j such that lj0 � (log n)ε,

b̂jK =

l−1j ∑
k∈BjK

|β̂jk|2
 1

2

and the threshold λ will be precised bellow.

4 Main result

We have the following result:

Theorem 4.1 We assume that f belongs to the class

F(M1,M2, B) = {f ∈ Hs, supp(f) ⊂ [B,−B], ‖f‖Hs ≤M1, ‖f‖∞ ≤M2},
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then for 1/2 < s < N + 1, λ = 4
∑

l≥0 φ(l)‖f‖∞/n1/2 and for mixing coefficients arith-

metically decreasing with θ > 6− 4
1+2(N+1)

, there exists a positive constant C such that

E‖f − f bn‖22 ≤ Cn−
2s

1+2s .

5 Preuves

Proofs are based on the work of Kerkyacharian et al. (1996), concentration inequality
of Talagrand (1995) and on a bound of variance of partial sums of dependent r.v. in
Viennet (1997).
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