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Résumé. Au cours de la dernière décennie, les progrès en Biologie Moléculaire ont
favorisé l’essor de techniques d’investigation à haut-débit. En particulier, l’étude du
transcriptome à travers les puces à ADN ou les nouvelles technologies de séquençage,
a permis des avancées majeures dans les sciences du vivant et la recherche médicale.
Dans ces travaux, nous nous intéressons au problème de sélection d’un ensemble de gènes
d’intérêt, aussi appelés ”signature moléculaire”. De telles signatures sont utilisées en
recherche médicale, et en particulier en oncologie, pour le diagnostic et le pronostic ainsi
que pour l’identification de nouvelles cibles thérapeutiques.
Afin de pallier les limites des méthodes classiques de sélection de gènes qui s’avèrent peu
reproductibles, nous présentons un nouvel outil, DiAMS (DIsease Associated Modules
Selection), dédié à l’identification de modules enrichis en gènes significativement associés
à la maladie. DiAMS repose sur une extension du score-local et permet l’intégration de
données d’expressions et de données d’interactions protéiques. Dans cet exposé, nous
détaillerons les différents principes de cette approche et proposerons une stratégie de
simulation afin d’évaluer les performances de notre méthode, en terme de puissance, de
taux d’erreur de type I et de reproductibilité. DiAMS sera ensuite intégré dans un pipeline
d’analyse que nous appliquerons à l’étude de la rechute métastatique dans le cancer du
sein.

Mots-clés. Transcriptome, Information a priori, Intégration de données hétérogènes,
Score-local, Cancer du sein.
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Abstract. During the last decade, an incredible number of statistical tools have
emerged for studying the transcriptome. A key motivating factor is the selection of genes,
often referred to as the ”molecular signature”, whose combination is characteristic of a
biological condition. Signatures give rise to new clinical opportunities, for understanding
disease predispositions, improving diagnostics or prognostics, and providing new ther-
apeutic targets as well as individualized treatment regimens. Their identification has
become a topic of much interest in medical research, with several applications emerging,
particularly in the field of Oncology. However, it turns out that the signatures result-
ing from classical tools proposed in the literature suffer from a lack of reproducibility
and are not statistically generalizable to new cases. A major statistical issue in high-
throughput transcriptome experiments is how to select relevant and robust signatures
given the large number of genes under study. We focus on robust gene selection through
differential analysis approaches. We present a new approach, DiAMS (Disease Associated
Modules Selection), that aims at improving the robustness of signatures across studies.
The proposed methodology integrates both Protein-Protein Interactions (PPI) and gene
expression data in a local-score approach. In this talk, we will present the global approach
of DiAMS, for the selection of modules significantly enriched in disease associated genes.
We will also introduce the algorithm for module ranking and how to assess the significance
of modules by Monte-Carlo simulations. Finally, we evaluate the performance of DiAMS
in terms of power, false-positive rate and reproducibility.

Keywords. Transcriptome, Prior knowledge, Integration of heterogeneous data,
Local-score, Breast cancer.
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1 Background

During the last decade, an incredible number of statistical tools have emerged for study-
ing the transcriptome. A key motivating factor is the selection of genes, often referred to
as the ”molecular signature”. A major statistical issue in high-throughput transcriptome
experiments is how to select relevant and robust signatures given the large number of
genes under study. We present a new approach, DiAMS (Disease Associated Modules Se-
lection), that aims at improving the robustness of signatures across studies. The proposed
methodology integrates both Protein-Protein Interactions (PPI) and gene expression data
in a local-score approach.

2 Extended version of the local-score approach for

module discovery

The local-score statistic is a matter of interest in biological sequence analysis. It found
many applications in pattern identification to locate transmembrane or hydrophobic seg-
ments, DNA-binding domains as well as regions of concentrated charges. The litera-
ture on the subject of local-score includes, but is not limited to [Brendel et al., 1992],
[Karlin and Brendel, 1992] or [Guedj et al., 2006].
We propose to extend the local-score statistics to the discovery of high-scoring modules
of genes in a PPI network. Let us consider here that we have enumerated all the possible
modules of the network in a list calledM. Obviously, it is not possible in large-scale net-
works and we dedicate the section 2.2.1 to the development of an alternative approach.
We denote Wg, the score of a given gene g. The local-score is thus defined as the value of
the highest scoring module (i.e. the module whose sum of gene score is maximal):

L = max
M∈M

(∑
g∈M

Wg

)
.

Note that a module is maximal in the sense that it can not be extended or shortened
without reducing the local-score statistic.

This definition of the local score restricts our search to the highest scoring module.
However, the next highest scoring modules may be potentially interesting for the study.
We therefore rank all modules of the initial network, such that the kth best module is
defined as the module with the kth best local-score denoted Lk such as L1 > ... > Lm,
and identify significant ones. Such an approach will probably yield to the identification
of overlapping modules. For instance, the second best module will likely include or be
contained in the first highest scoring module. To avoid such situations that provide limited
information, we look at disjoint modules. Thus, once the best module has been identified,
each gene included in it is thus removed from the remaining modules.
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2.1 Module scoring

The local-score statistic relies on gene scores, denoted Wg, that reflects the association
of a given gene to the phenotype of interest. We define the scoring function as follows:
Wg = Zg − δ, such as Zg is the individual score of each gene g and δ a constant specified
in the following paragraph. In this work, we derive the individual score Zg of gene g from
its p-value, denoted pg, resulting from a statistical test such as limma from [Smyth, 2004].
Given that a high score Zg should denote a high chance of association with phenotypes
of interest, the p-values need a transformation such as Zg = −log10(pg), to be used as an
individual score for each gene.
A constraint of the strategy is to have expected negative individual scores, i.e. E (Wg) ≤
0, otherwise the module with the highest score would easily span the entire network.
Consequently, a constant δ must be subtracted to obtain corrected scores. Genes with a
score higher than δ will improve the cumulative score of a given module whereas genes
with a score below the threshold will penalize it. We set the value of δ equal to the
significance level α = 0.05.

2.2 Disease associated modules selection

In the present subsection we detail the global strategy, to search for functional modules
presenting unexpected accumulations of genes associated to a phenotype of interest in a
PPI network.

2.2.1 Input parameters

The first input parameter that is passed to DiAMS is a PPI network. The main issue when
working with biological networks lies in the impossibility of exploring the huge space of
possible gene subnetworks. Here, we propose a strategy which allows the entire network
to be screened without constraints on module sizes by converting the network into a tree
structure using a clustering algorithm. This is driven by the observation that biological
graphs are globally sparse but locally dense, i.e. there exist groups of vertices, called com-
munities, highly connected within them but with few links to other vertices. Therefore, by
applying a strategy of clustering which enables to obtain a hierarchical community struc-
ture we are able to capture much information about the network topology. The main
advantage is that the hierarchical structure renders it relatively easy to go through it
instead of exploring all possible subnetworks. Thus the preliminary step of our approach
is to convert the network structure into a relevant tree structure. For this purpose, we
use the approach of [Pons and Latapy, 2004], named walktrap. The authors employed
a random walk strategy through the network for detecting dense modules, introducing a
similarity measure based on short walks, which is used to define a distance matrix between
any two genes (or nodes) of the network. According to Ward’s criterion, they are able to
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infer a tree structure. A module is no longer defined as a subnetwork but as a subtree of
the hierarchical structure (see Figure 1). In analogy with the definition of the local-score
for network, we define it for a hierarchical community structure, denoted H, as follows:

L = max
H⊆H

(∑
g∈H

Wg

)
,

such as H is included in H if H is a subtree of H, i.e. H can be obtained from H by
deleting nodes in H.

The second parameter that has to be passed to the method is a vector of scores Zg, that
quantifies for each gene its association to the disease. In this study the scoring function is
related to the differential expression of the gene such as significant genes, i.e. those that
are significantly differentially expressed, have a higher score than non-significant genes.
However, other kinds of scoring approaches may also be suitable as well as high scores,
denoting a strong association to the disease.

2.2.2 Module ranking through a local-score strategy

Once both the tree structure and the score vector have been defined, we search for ac-
cumulation of high-scoring genes in the tree. The strategy for the selection of significant
modules can be described in the following three-step algorithm:

1. Initialization - The first step consists of enumerating modules of the tree in a
list and assigning them a score, which is defined as the sum of individual scores,
denoted Wg, of all the genes that constitute it, see Figure 1.

2. Module ranking - The second step involves an iterative local-score algorithm: (i)
the highest-scoring module is identified (ii) then, it is removed from the list of mod-
ules. Steps (i) and (ii) are then repeatedly applied until all disjoint modules have
been enumerated. Thus, we obtain a ranked list of m modules and their respective
local-scores L1, ...,Lm such as L1 > ... > Lm with the ith best module being disjoint
from the preceding ith− 1 best modules.

3. Module significance assessment - Given L1, ...,Lm, the last step proposes a
way to select a set of modules significantly enriched in disease associated genes.
The global significance of each module is assessed via Monte-Carlo simulations.
Through this permutation procedure we obtain a p-value for each module and are
able to make a conclusion about its significance of at a given level.
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Figure 1: Module description.

A module is defined as a subtree of the hierarchical structure. Leaves, i.e. genes, are also
considered as modules. Thus, in this figure we count eleven modules: six modules of size
one and five modules of size greater than one. For instance, the module M3 is composed
of four genes. Its score is the sum of each individual gene score, Wg3, Wg4, Wg5 and Wg6.

To evaluate the significance of modules we derive their distributions under the null
hypothesis of no accumulation of high-scoring genes, using Monte-Carlo permutations.

3 Evaluation strategy

In this section we detail the strategy adopted to evaluate DiAMS. Each evaluation criterion,
namely the power, the type-I error rate and the reproducibility, are compared with our
modular strategy and its individual scoring counterpart, limma. Here, we perform the
simulations under a Gaussian model, i.e. for data produced by a microarray experiment.

Power Study Recent results from [Gandhi et al., 2006, Lage et al., 2007] or [Oti and Brunner, 2007],
which have motivated the development of DiAMS, suggest that genes involved in the molec-
ular mechanisms of genetic diseases interact together in functional modules. Therefore, to
evaluate our approach, we designed a simulation study under this hypothesis of a modular
activity of genes. Firstly, it involves randomly sampling significant modules in the tree
structure. Secondly, we simulate a gene expression matrix. The genes belonging to non-
significant modules are simulated under the null hypothesis of equality across the mean
expression levels for both conditions: µ

(1)
g = µ

(2)
g , while genes of significant modules are
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simulated under H1, such as µ
(2)
g = µ

(1)
g + ∆, with ∆ in {0.5, 0.75, 1, 1.25, 1.5, 2, 3}. The

p-values obtained from Monte-Carlo permutations are then adjusted using the Benjamini-
Hochberg procedure to control the FDR criterion at a level of 5%.
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Figure 2: Power and reproducibility results.

A - The mean of power values over the 1, 000 simulations and its 95% confidence interval
are calculated at a 0.05 FDR level for the DiAMS method (in dark gray) and the limma

statistic (in light gray) and displayed according to ∆, the difference of mean expression
levels under H0 and H1. B - This barplot displays the results of the reproducibility anal-
ysis for which we compute the mean of the overlap between a signature of reference and
signatures of subsampled expression matrices over 10, 000 simulations. We represent the
95% confidence interval for each sample size.

The Figure 2-A illustrates the results of the power analysis for both DiAMS and limma.
As expected, the curve describing the statistical power converges to 1 with increasing
values of ∆. For ∆ = 0.5, it appears that the power is very similar for both approaches ,
although DiAMS is slightly more powerful. For all values of ∆ in {0.75, 1, 1.25, 1.5, 2}, we
observe large differences in power between the two approaches with DiAMS outperforming
limma.

We also consider a scenario where genes are simulated independently under H1, i.e.
without assuming a modular activity. The power values obtained are identical for both
methods, due to the fact that the p-values of individual genes are exactly the same as
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those resulting from limma. At worst, if the hypothesis of a functional relationship between
disease genes is wrong, the power results are equivalent to limma.

False-Positive Rate Using the same simulation strategy as described in the previous
subsection, we assess the false-positive rate. A statistical test conducted at a significance
level of 0.05 should control the false-positive rate at 5%. Thus, by simulating an entire
dataset under H0, i.e. ∀g : ∆ = 0 , we evaluate the proportion of genes spuriously selected
as significant. Both the limma and DiAMS false-positive rates are estimated for various
sample sizes ranging from 5 to 50 samples per condition.

It appears that the rates are similar for both approaches and they lie within the 95%
confidence interval (data not shown). For each sample size, limma and DiAMS meet the
theoretical false-positive rate.

Reproducibility study Next, we examined the agreement between signatures using a
subsampling procedure. As described in the power study, we simulated modules under
H1 as well as the corresponding expression matrix and compute a signature of reference.
Then, we randomly subsampled the replicates of the initial matrix with replacement and
estimate the signature again. The reproducibility is calculated as the overlap between the
reference signature and the signature of subsampled expression matrices. This procedure
is performed for various subsample sizes from an initial dataset containing 50 samples for
two conditions.

The reproducibility results are averaged over 10, 000 simulations and displayed in
Figure 2-B. For the larger sample size, the initial matrix has been re-sampled with re-
placement. Even if the sample size is the same, meaning that the noise added to the initial
dataset is relatively low, the percentage of reproducibility for limma is only 90% while
DiAMS almost reaches 100%. All the results displayed in Figure 2-B show that limma is
very sensitive to the noise in data while DiAMS results appear to be more consistent. This
is especially true for small sample sizes, for which the reproducibility of the signature is
about 95% with the DiAMS approach while the percentage is almost null (0.3%) with the
limma selection method. The gap remains very large for the other sample sizes and DiAMS

clearly provides significantly better results than limma in terms of reproducibility.

4 Conclusion

We developed a network-based approach named DiAMS for the selection of gene signa-
tures. We demonstrated through simulations that, under the assumption of a modular
activity of genes, DiAMS is more efficient in terms of power and reproducibility than
the moderated t-statistic strategy used in limma. We also applied this method to study
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the metastatic relapse of Estrogen Receptor negative breast cancers and demonstrated
the relevance of signatures obtained using DiAMS, by highlighting relevant biological
phenomena. In addition, such an approach facilitates the ease of the interpretation of
the resulting signature by providing information on molecular mechanisms through the
extraction of PPI subnetworks.
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