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Résumé. L’Analyse Canonique Généralisée Régularisée (RGCCA) permet l’étude
des relations entre différents blocs de données. Dans ce papier, une version multivoie de
RGCCA (MGCCA) est proposée. MGCCA cherche à décrire et comprendre les relations
entre tenseurs.
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Abstract. Regularized Generalized Canonical Correlation Analysis (RGCCA) is cur-
rently geared for the analysis two-way data matrix. In this paper, multiway RGCCA
(MGCCA) extends RGCCA to the multiway data configuration. More specifically, MGCCA
aims at studying the complex relationships between a set of three-way data table.
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1 Introduction

On the one hand, multiblock analysis concerns the analysis of data structured in blocks
of variables. In this framework, a column partition X = [X1, . . . ,Xl, . . . ,XL] is consid-
ered. Each I × Jl data matrix Xl is called a block and represents a set of Jl variables
observed on I individuals. The number and nature of the variables usually differ from
one block to another but the individuals are the same across blocks. The main aim is
to investigate the relationships between blocks. It appears that Regularized Generalized
Canonical Correlation Analysis (RGCCA) [Tenenhaus and Tenenhaus, 2011], is a general
framework for multiblock data analysis.

On the other hand, suppose that measurements are avalaible from, for instance, I in-
dividuals on J variables measured at K occasions. In the litterature, such data is called
three-way data because per occasion measurements are available for the same group of
individuals on the same set of variables. These three-way data can be collected in an
I × J ×K three-way array X, with frontal slices Xk containing the I × J data matrices
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for each of the K occasions.

Several examples of either three-way data or multiblock data can be found in a vari-
ety of domains including chemometrics, psychometry, bioinformatics to name but a few.
Nowadays, it frequently occurs to encounter data combining multiway and multiblock
structures. For instance, neuroimaging is increasingly recognised as an intermediate phe-
notype to understand the complex path between genetics and behavioural or clinical
phenotypes. In this context, the goal is primarily to identify a set of genetic biomark-
ers that explains some neuroimaging variabilities which implies some modifications of
the behavioural. Often, the neuroimaging and the behavioral variabilities are evaluated
througth time. Thus, it is crucial to perform multiple experiments (e.g. SNPs, functional
MRI across time , behavioural data across time) on a single set of patients and the joint
analysis of dataset that gathers two-way and three-way data becomes more and more
crucial. RGCCA is currently geared for the analysis two-way data matrices. In this pa-
per, multiway RGCCA (MGCCA) extends RGCCA to the multiway data configuration.
More specifically, MGCCA aims at studying the complex relationships between a set of
multi-way data table.

2 Regularized Generalized Canonical Correlation anal-

ysis

Let us consider L data blocks X1, . . . ,Xl, . . . ,XL. Each block Xl is of dimension I × Jl.
We also associate to each matrixXl a symmetric definite positive matrixMl of dimensions
Jl × Jl. In addition, a design matrix C = (cjk) is defined with cjk = 1 if blocks Xj and
Xk are supposed to have shared information, and = 0 otherwise. RGCCA for multi-block
data analysis is defined as the following optimization problem.

maximize
w1,...,wL

L
∑

j,k=1:j 6=k

cjk g (cov(Xjwj ,Xkwk)) s.t. w⊤
l Mlwl = 1, l = 1, . . . , L (1)

with g(x) a convex function of the scalar x. Typical choices of g(x) are the identity, the
absolute value or the square function. The vector wl is called “vector of weights”, the
vector Xlwl is called “block component”. RGCCA is recovered through the optimization
problem (1) with Ml = τlIJl+(1−τl)X

⊤
l Xl and the shrinkage constant τl varying between

0 and 1.

By setting al = M
1/2
l wl and Pl = XlM

−1/2
l , the optimization problem (1) becomes:

maximize
a1,...,aL

L
∑

j,k=1:j 6=k

cjk g (cov(Pjaj ,Pkak)) s.t. a⊤
l al = 1, l = l, . . . , L (2)
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A monotone convergent algorithm (i.e. the bounded criteria to be maximized increases
at each step of the procedure) is proposed in [Tenenhaus and Tenenhaus, 2011] and in
[Tenenhaus and Tenenhaus, 2014] for the resolution of optimization problem (2).

3 Multiway RGCCA

Let us consider L up to order 3 tensors X1, . . . ,XL. Each tensor Xl is of dimension
I × Jl × Kl. The shared dimension across tensors is the row-mode. Let us consider
their corresponding matricized versions X1, . . . ,XL. Each matrix Xl = [Xl1, . . . ,Xl,Kl

]
is of dimension I × JlKl and represents all the frontal slices of the tensor next to each
other. We also associate to each Xl a symmetric definite positive matrix Ml of dimensions
JlKl×JlKl which usually has a block structure. A design matrix C = (cjk) is also defined
with cjk = 1 if Xj and Xk are supposed to have shared information, and = 0 otherwise.
Taking into account the network of connections between the three-way data, our objective
is to study the relationships between them. Using the same transforms as the ones used
previously, al = M

1/2
l al and Pl = [Pl1, . . . ,Pl,Kl

] = [Xl1, . . . ,Xl,Kl
]M

−1/2
l , multi-way

RGCCA (MGCCA) is defined as the following optimization problem:



















maximize
a1,...,aL

f(a1, ..., aL) =
L
∑

j,k=1:j 6=k

cjk g (〈Pjaj ,Pkak〉)

s.t. a⊤
l al = 1 and al = cl ⊗ bl, l = 1, . . . , L

(3)

The sole difference between RGCCA and MGCCA relies on the kronecker constraints
(structural constraints) that are applied on the outer weight vectors. These structural
constraints are usual in the multi-way literature (see for instance [Bro, 1996]).

Two general set-ups constitute the internal mechanism for the maximization of the opti-
mization problem (3). In the first, the function is to be maximized over different parameter
vectors (i.e. a1, . . . , aJ), and this is approached by updating each of the parameter vectors
in turn, keeping the others fixed. If each update improves the function value, the function
will be optimized gradually over the complete set of parameter vectors. This principle
is called block relaxation by [De Leeuw, 1994]. The second set-up relies on iterative ma-
jorization [Hunter and Lange, 2004].

Actually, at each block relaxation substep the core optimization that has to be considered
in MGCCA is:

as+1
l = argmax

a,‖a‖=1

〈Pla, z
s
l 〉 subject to a = c⊗ b. (4)
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where zsl is the so-called inner component defined by

zsl =
∑

k<l

clkg
′
(

〈Pla
s
l ,Pka

s+1
k 〉

)

Pka
s+1
k +

∑

k>l

clkg
′ (〈Pla

s
l ,Pka

s
k〉)Pka

s
k (5)

The optimization problem (4) boils down to find a set of weight vectors c and b that
produce a block component yl = Plal with maximal scalar product with zl. This problem
is equivalent to:

as+1
l = argmax

b,c;‖c⊗b‖=1

(zsl )
⊤Pl(c⊗ b) = argmax

b,c;‖c⊗b‖=1

(zsl )
⊤

[

Pl (c⊗ IJl)

]

b

= argmax
b,c;‖c⊗b‖=1

(zsl )
⊤

[ K
∑

k=1

ckPlk

]

b = argmax
b,c;‖c⊗b‖=1

[ K
∑

k=1

ck(z
s
l )

⊤Plk

]

b

= argmax
b,c;‖c⊗b‖=1

c⊤Qlb (6)

where Ql is a Kl × Jl matrix defined by Ql = [P⊤
l1z

s
l , . . . ,P

⊤
lKl

zsl ]
⊤.

From equality (6), we deduce that c and b, solution of the optimization problem (4),
are the first left and right singular vectors of the matrix Ql. It appears that c and b

are constrained to be normalized, satisfying automatically the unit norm constraint on al.
Note that a similar optimization is found for Multilinear Partial Least Squares [Bro, 1996].

The entire MGCCA algorithm is described in Algorithm 1.

Data: Xjs, τjs, g, ε
Result: ajs
Initialization: choose random unit norm a0

l for each l = 1, . . . , L;
s = 0 ;
while f(as+1

1 , . . . , as+1
J )− f(as

1, . . . , a
s
J) < ε do

for l = 1, 2, . . . , L do

• zsl =
∑

k<l

clkg
′
(

〈Pla
s
l ,Pka

s+1
k 〉

)

Pka
s+1
k +

∑

k>l

clkg
′ (〈Pla

s
l ,Pka

s
k〉)Pka

s
k

• as+1
l = cs+1

l ⊗ bs+1
l

where cs+1
l and bs+1

l are obtained as the first left and right singular vectors
of the matrix Ql = [P⊤

l1z
s
l , . . . ,P

⊤
lKl

zsl ]
⊤ of dimension Kl × Jl.

end

s = s+ 1 ;
end

Algorithm 1: RGCCA algorithm for three-way data analysis
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4 Alternative formulation and interpretations

This section proposes alternative expressions of the matricized matrices that appear in
the MGCCA algorithm. This reformulation allows complementary views/interpretations.

New notations are introduced in this section. LetPl = [Pl1, . . . ,PlKl
] andPk = [Pk1, . . . ,PkKk

],
be two matricized matrices of dimension I × JlKl and I × JkKk. Let al = cl ⊗ bl and
ak = ck ⊗bk be the corresponding outer weight vectors. Let Pl

..k = Pkl be the k
th frontal

slice of Pl of dimension I × Jl and Pl
.j. be the jth lateral slice of Pl of dimension I ×Kl.

Figure 4 depicts the frontal and lateral slices that are handled within MGCCA.

(a) Frontal slices (b) Lateral slices

Figure 1: Frontal (P..k) and lateral (P.j.) slices of the tensor X that are handled within
MGCCA

Plal = Pl(IKl
⊗ bl)cl =

( Jl
∑

j=1

bljP
l
.j.

)

cl (7)

= Pl(cl ⊗ IJl)bl =

( Kl
∑

k=1

clkP
l
..k

)

bl (8)

From equations (7) and (8), we conclude that the outer component Plal can be expressed
as a linear combination of the columns of either

∑Jl
j=1

bljP
l
.j. or

∑Kl

k=1
clkP

l
..k. It yields

that the dot product between components can be expressed as follows:

〈Plal,Pkak〉 = (cl ⊗ bl)
tPt

lPk(ck ⊗ bk)

= bt
l

[ Kl
∑

h=1

clhP
l
..h

]t[ Kk
∑

h=1

ckhP
k
..h

]

bk (9)

= ctl

[ Jl
∑

j=1

bljP
l
.j.

]t[ Jk
∑

j=1

bkjP
k
.j.

]

ck (10)
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From expressions (7)-(10), it appears that the matricization operations can be avoided
and replaced by weigthed means of either the lateral or the frontal slices of the tensors
Xl or Xk.

5 Conclusion

We have shown that a simple monotone convergent algorithm can be used for multi-
block/multiway data. A lot of experiences have been gathered in multi-block data analy-
sis. The field of multiblock/multiway data analysis has been less explored. Our proposal
of using RGCCA for multiblock/multiway data analysis is new and opens a new field to
be explored.
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