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Résumé. Un processus de Cox d’intensité aléatoire λ = (λ(t))t∈[0,1] est un processus
de comptage N = (Nt)t∈[0,1] tel que la loi conditionnelle de N sachant λ est un processus
de Poisson d’intensité λ. Par abus, nous appellerons processus de Cox un processus
de comptage N = (Nt)t∈[0,1] accompagné d’un co-processus Z == (Zt)t∈[0,1] tel que,
conditionnellement à Z, la loi de N est un processus de Poisson d’intensité θ(Z) avec θ
une fonction déterministe. Idéalement, on voudrait estimer la fonction θ à partir d’un
n-échantillon (N1, Z1), . . . , (Nn, Zn) de copies de (N,Z). Cependant, un telle approche
se heurte inévitablement au fléau de la dimension, car la convariable est à valeurs dans un
espace de dimension infinie. En pratique, il n’est souvent pas nécessaire, ou tout du moins
ce n’est pas strictement nécessaire pour la modélisation, d’observer toute la trajectoire
du co-processus, mais seulement ses valeurs en des instants aléatoires. De la sorte, si
le co-processus n’est observé qu’en un nombre fini d’instants aléatoires, on circonvient
au fléau de la dimension. Nous construisons et étudions sous ce modèle les propriétés
d’un estimateur de type noyau pour la fonction θ. Sa consistance, un théorème de la
limite centrale ainsi qu’une vitesse de convergence pour l’erreur quadratique moyenne
sont données.
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Abstract. A Cox process N = (Nt)t∈[0,1] with random intensity λ = (λ(t))t∈[0,1] is
formally defined as a counting process such that the conditional distribution of N given
λ is a Poisson process with intensity λ. By a slight abuse we shall call Cox process a
counting process N = (Nt)t∈[0,1] accompanied with a co-process Z = (Zt)t∈[0,1] such that
the conditional law of N given Z is a Poisson process with intensity θ(Z) where θ is
a deterministic function. From a statistical point of view one of the major issue is to
estimate the deterministic function θ using n independent copies (N1, Z1), . . . , (Nn, Zn)
of (N,Z). However, such an approach is subject to the curse of dimensionality as the
covariate Z takes its values in an infinite dimension space. When dealing with practical
problems it is often unnecessary or at least not strictly required for the modelling to
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observe the full trajectory of the co-process. One can instead observe the values taken by
the co-process at some random times. The co-process is then observed at a finite number
of random times thereby circumventing the curse of dimensionality. We construct and
study the properties of a kernel estimator for the function θ. Its consistency, a central
limit theorem and a rate of convergence of its mean square error are given.

Keywords. Cox process, Kernel estimator

1 Introduction
Counting processes have been used for many years to model a large variety of situations
from neuroscience (Bialek et al. 1991; Brette 2008; Krumin and Shoham 2009) to seismic
(Ogata 1988), financial (Merton 1976), insurance (Asmussen and Albrecher 2010) or bio-
physical data (Kou et al. 2005). The Poisson process has the simplest structure of any
counting process. Cox processes are more flexible processes due to their random intensity.
A Cox process N = (Nt)t∈[0,1] with random intensity λ = (λ(t))t∈[0,1] is formally defined
as a counting process such that the conditional distribution of N given λ is a Poisson
process with intensity λ.

Note that when Cox process data arise, the intensity of the process is mainly not
directly observed but a co-process is observed instead. Returning to one of the previous
example, in single-molecule experiments only the peaks inducing the counting process
and an underlying process are observed (Kou et al. 2005). Another example is to be
found in car insurance (Asmussen and Albrecher 2010) where the counting process models
the occurrence of car crash that are subject to weather conditions. In these cases the
counting process N = (Nt)t∈[0,1] that naturally raises is accompanied with a co-process
Z = (Zt)t∈[0,1], such that the conditional law of N given Z is a Poisson process with
intensity θ(Z) where θ is a deterministic function. By a slight abuse we shall call Cox
process such a counting process. From a statistical point of view one of the major issue is to
estimate the deterministic function θ using n independent copies (N1, Z1), . . . , (Nn, Zn)
of (N,Z). However, such an approach is subject to the curse of dimensionality as the
covariate Z takes its values in an infinite dimension space as seen in O’Sullivan (1993).

When dealing with practical problems it is often unnecessary or at least not strictly
required for the modelling to observe the full trajectory of the co-process. One can
instead observe the values taken by the co-process at some random times. The co-process
is then observed at a finite number of random times thereby circumventing the curse of
dimensionality.

We consider the following model: N = (Nt)t∈[0,1] is the counting process; Z = (Zt)t∈[0,1]
is the co-process such that for all t ∈ [0, 1], Zt is a Rd valued random variable. The random
times are S1 < S2 < . . .. We assume that given S = (S1, S2, . . .), N is a Cox process with
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intensity function

λ : [0, 1]→ R+

t 7→ θS
(
t, ~ZS(t)

)
,

where ~ZS(t) = (ZS1 , . . . , ZSMS(t)
), MS(t) = max(l > 0 : Sl ≤ t) and for all t ∈ [0, 1],

θS(t, ·) is a real valued function defined in RdMS(t).
In the sequel we consider that given S, (N1, Z1), . . . , (Nn, Zn) are i.i.d. copies of

(N,Z). We propose the following kernel estimator for the function θS defined for all
t ∈ [0, 1] and z ∈ RdMS(t):

θ̂h,η(t, z) =

1
n

∑n
k=1Hη

(
z − ~Zk

S(t)
)∑Nk

t
i=1Kh(t− T ki )

1
n

∑n
l=1Hη

(
z − ~Z l

S(t)
)
∨ an

,

where an is a decreasing non-negative sequence with an →
n→+∞

0, H = H⊗dMS(t), with

H : R → R a kernel, Hη(·) = 1
ηdMS(t)H

(
·
η

)
, η a bandwidth, K : R+ → R a kernel,

Kh(·) = 1
h
K
( ·
h

)
and h a bandwidth.

Note that MS(t) increases as t increases, which represents the fact that as t increases
we get more information. As a consequence, it is to be expected that as t increases, the
convergence rate decreases.

2 Results
In this section we give some regularity results on the suggested estimator to compare it
with the usual regularity properties of kernel based non parametric estimators.

To this end suppose that given S, ~ZS(t) admits a density f~ZS(t)|S. We need the following
assumptions: given S, for fixed t ∈ [0, 1],

(H1) θS : ]SMS(t), SMS(t)+1[×RdMS(t) → R+ and f~ZS(t)|S are continuous, positive functions;

(H2) θS : ]SMS(t), SMS(t)+1[×RdMS(t) → R+ and f~ZS(t)|S are twice differentiable and have
bounded continuous partial derivatives.

(H3) ‖θS‖∞<∞ and 0 < F0 ≤ f ≤ F∞ <∞.

Remark that we make local regularity assumptions on θS here. Indeed t is almost
surely not an arrival time of the process N and for all u ∈]SMS(t), SMS(t)+1[, θS(u, ·) is a
real valued function defined in RdMS(t).

The following usual assumptions are also made on the two kernels
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(H4) suppH = [−1, 1], H ∈ L3(R), ‖H‖2< ∞, ‖H‖∞< ∞,
∫
RH(u)du = 1 and for all

k ∈ {1, 2},
∫
R u

kH(u) = 0.

(H5) suppK = [0, 1], K ∈ L3(R), ‖K‖2< ∞,
∫
RK(u)du = 1 and for all k ∈ {1, 2},∫

R u
kK(u) = 0.

In the following we take an = (nηdMS(t))ε−1 for ε ∈ (0, 1/2). We study the point-wise
mean squared error function of our estimator denoted for fixed t ∈ [0, 1], z ∈ R∞, h > 0
and η > 0 by

MSE(t, z) = E
[
θ̂h,η
(
t, zS(t)

)
− θS

(
t, zS(t)

)]2
,

where zS(t) is the projection on RdMS(t) of z.
From now on the projection on RdMS(t) of any vector will be denoted ·S(t).

Theorem 1. Assume that (H1)–(H5) are satisfied.
For fixed t ∈ [0, 1], if h → 0, η → 0, nhηdMS(t) → +∞ and nηdMS(t)+4 → 0 a.s. as
n→ +∞ then for all z ∈ R∞, the point-wise mean square error writes

MSE(t, z) ≤ C

[
E
‖H‖2dMS(t)

2

nηdMS(t)
+ h4 + η4 + h2η2 + E

1

nhηdMS(t)

+ o

(
E
‖H‖2dMS(t)

2

nηdMS(t)

)
+ o(h4) + o(η4) + o(h2η2) + o

(
E

1

nhηdMS(t)

)]
(2.1)

where C is a deterministic constant.

Note that we can get the consistency of our estimator under weaker assumptions as
shown in the following proposition

Proposition 2. Assume that (H1),(H3),(H4),(H5) are satisfied.
For fixed t ∈ [0, 1], if h → 0, η → 0 and nhηdMS(t) → +∞ a.s. as n → +∞ then for all
z ∈ R∞

θ̂h,η (t, zS(t))
P→ θS (t, zS(t)) .

Theorem 3. Assume that (H1)–(H5) are satisfied.
For fixed t ∈ [0, 1], if nhηdMS(t) → +∞, nηdMS(t)+2 → 0, and nh3ηdMS(t) → 0 a.s. as
n→ +∞ then for all z ∈ R∞ such that θS

(
t, zS(t)

)
6= 0

(
nhηdMS(t)

)1/2 θ̂h,η
(
t, zS(t)

)
− θS(t, z)[

θ̂h,η
(
t, zS(t)

) ∫
K2H2/f̂η

(
zS(t)

)]1/2 D→ N (0, 1).

where f̂η
(
t, zS(t)

)
=

1

n

n∑
l=1

Hη

(
z − ~Z l

S(t)
)
∨ an.
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