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Résumé. Nous utilisons 'estimateur de quasi maximum de vraisemblance de Poisson
(PQMLE) pour estimer, équation par équation, les paramétres des moyennes condition-
nelles d'une série temporelle multivariée a valeurs entiéres. Des conditions de régularité
sont données pour la consistance et la normalité asymptotique de cet estimateur. Des ap-
plications & des modéles particuliers, comme les modéles INAR et INGARCH multivariés,
sont ainsi considérées. Des illustrations numériques, sur des simulations de Monte Carlo
et sur des données réelles, sont fournies.

Mots-clés. Séries temporelles multivariées a valeurs entiéres, L’estimateur de quasi
maximum de vraisemblance de Poisson, Consistance et normalité asymptotique, Copules,
Moyenne conditionnelle.

Abstract. The Poisson quasi maximum likelihood estimator (PQMLE) is extended to
consistently estimate, equation by equation, the conditional mean parameters of a multi-
variate time series of counts. regularity conditions for the consistency and the asymptotic
normality of PQMLE are given. Applications to particular multivariate models, as mul-
tivariate INAR and INGARCH, are considered. Numerical illustrations via Monte Carlo
simulations and real data applications, are provided.
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1 Introduction

The multivariate time series of counts are often found in a lot of applications in many
scientific fields, for example, economy, biology and accidents analysis. Several models
are proposed to deal with this kind of data. The most commonly used ones are the
conditional means models whose the means are assumed to follow, conditionally on past
observations, a vector autoregression. For example, the bivariate INGARCH model with
bivariate Poisson conditional distribution Liu (2012) and the multivariate Double-Poisson
INGARCH using copulas Heinen and Rengifo (2007). The study and the analysis of mul-
tivariate count time series pose several problems and questions. For instance, regarding
to the conditional means models, the non negative integer-valued support multivariate



distributions, which are able to accommodate the negative contemporaneous correlation
between the series, are not abundantly available in the literature. One of these distri-
butions which can be used to accommodate the negative contemporaneous correlation
is the multivariate Poisson Log-Normal distribution Aitchison and Ho (1989), but it is
difficult to be employed as a conditional distribution in the conditional mean models.
However, This problem has been solved by using copulas which also still have limits to be
used with the discrete distributions and require sometimes to apply the continuousation
on the variables. In this paper, we propose a general and simple methodology to esti-
mate such models. Where, we extend the Poisson quasi maximum likelihood estimator
(PQMLE) studied by Ahmad and Francq (2015) to estimate the conditional means pa-
rameters of the multivariate time series of counts whatever the correlation between the
series (positive, negative or absence of correlation) and whatever the nature of dispersion
of the series (under-dispersed, over-dispersed or equi-dispersed). In this estimator, we
need only to specify the conditional means of the series. The multivariate models will be
estimated equation by equation (EbE) by giving general regularity conditions under which
the EbE-PQMLE is consistent and asymptotically normal. Section 2 contains the general
formulation of the model. Section 3 shows the main results concerning the asymptotic
behavior of the EbE-PQMLE. Section 4 contains an application of EbE-PQMLE to the
Bivriate Poisson INAR(1) model and an example of its concerned Monte Carlo simulation
results. Section 5 concludes, and the theatrical assumptions are collected in Section 5.

2 General formulation

Assume that X; is k-dimensional vector of a time series of counts valued in N, assume
also that the conditional mean of each component of X,— (X1,,..., Xz,) are equal to
another vector Ay= (A4, ..., A\r¢) such that

E(Xar | Xaw,u <t) =X (Xas—1, Xar—2, -, Xeam1, Xew—2, -1 0a0) = Aae. (2.1)

Where d and ¢ € {1,..., K}, and d # ¢. 6,0 is an unknown parameter belonging to
some parameter space 04, and

Ag is a measurable function valued in (w, 4+00) for some w > 0 (2.2)

This formulation allows to A4 to be different from the equation to the other. For example,
Agq can be a linear function while A, is a log-linear or non-linear function. We assume also
that the marginal distribution has a moment slightly greater than 1

EX ;T < oo, for some € > 0, (2.3)

which entails the existence of the conditional mean.



3 Estimating the conditional means parameters

We consider the special case of the model (2.1) when the conditional mean \;; depends
on the past values of the components of the vector X; and only on its past values. To
estimate this model, we will use the PQMLE studied by Ahmad and Francq (2015) and
Christou and Fokianos (2013) for estimating, separately, the conditional mean parame-
ters of each series, which is called equation-by-equation estimation (EbEE). The reader
is referred to Francq and Zakoian (2014) for more details on estimation of multivariate
GARCH models using EbEE method. At first, consider that 6,0, for d € {1,...K}, is an
unknown parameter belonging to some parameter space ©4. The EbE-PQMLE is defined
as a solution of the following problem of maximization

~ ~ ~ 1 < ~
04, = arg max Lg,(0q), Lan(fa) = " Z La+(64), (3.1)

0q.n€Oq oot

where Zd,t(e) = —Xd,t(e) + Xy log Xd,t(e). Xd,t(e) and X, are respectively the dth compo-

nents of Ay() and X,. A,(6) is obtained by setting some initial values X,, X_;.. involved in
Aa.t(0). s is a constant for reducing the effects of the initial values and its value is asymp-
totically unimportant. The regularity conditions required for EbE-PQMLE are slightly
different from those of PQMLE. The technical assumptions of consistence (A1-A7) and
asymptotic normality (A8-A12) are given in the Appendix.

Theorem 3.1. Let X, be a stationary and ergodic process defined in (2.1) satisfying
(2.2) and (2.3) as well as the assumptions A1-A7. Let 6, be the EbE-PQMLE, then

Ourn — 040 a.s. as n — 0o.

For the asymptotic normality, we assume the existence of the conditional variance of
Xg. given its past, such that

E (th ‘ Xd,u,u < t) = ’Ud.t(ed.o) =+ )\?lt(edo) (32)

Theorem 3.2. Assume that (X,;) satisfies the conditions of Theorem 3.1. Assume also
(3.2) and A8-A11 are hold. Then

\/ﬁ(é\dn — Gd,o) i) N (0, Y= Jd_dllddjd_dl) as n — Q.
Where

L 0Ni(040) ONat(0a0) 7 Evd.t(ed.o) ONa.1(0a.0) ONa.1(ao)

J=E .
Aat(0ao)  00a 00, N2 (040) 06y oo,

(3.3)



It can be shown that, under the assumptions of Theorem 3.2, the asymptotic variance
of the EbE-PQMLE can be consistently estimated by de = Jdd [dedd with

N T 1 Ohgs(00) Ohgs (B
Jug = = _ - d.ta(e dn) dg(eld. )7 (5.4)
n t=s+1 /\d-t(ed.n)
2 ~ fon —~ ~
I, Xa Ot (0an) ONgt(0a)
la =3 -1 S (3.5)
t§1 <)‘dt(9d n) ) a0 00

4 Application of EbE-PQMLE to the bivariate Poisson
INAR(1) model

One of the most popular multivariate count time series model is the multivariate INAR(1)
(M-INAR(1)) model, which is introduced by Franke and Subba Rao (1995). The M-
INAR(1) model defines X; as a K-dimensional vector of a non negative integer-valued in
NF, where

X;=do X, 1+ E;

® is a k x k matrix with entries a;; € {0, 1}, for i, 7 = 1, ..., K. ®o acts as the usual matrix
multiplication keeping in the same time the properties of the binomial thinning operation.
The innovation term, E; = (1, ...., €)', is assumed to be iid N*-valued random vector
whose the components have finite mean and variance wy and 032 respectively. Let assume
that K=2 and the joint probability mass function of the two innovation processes (€14, €2;)
is a bivariate Poisson distribution. We denote this distribution as BP (A, Ae,, ). The
reader is referred to Pedeli and Karlis (2013) for more details on the properties and the
estimation of BP-INAR(1) model. One can note that by taking the conditional expecta-
tion of the BP-INAR(1) process, we will have a model similar to that defined in (2.1),
where E(X;| X, u<t) =N =Q+ DX, and E(Ey) = (A + 1, A, + ) =

4.1 Example of Monte Carlo simulation results

Table 1 shows the results of Monte Carlo simulations for the bivariate Poisson INAR(1)
model. The number of simulations is N=1000. For each simulation, the bivariate model
is estimated, equation by equation, using (3.1). The means of the estimated values of 6
are given in the rows "§". This table also gives two different estimators of the root-mean-

_ 2
square deviation 4/ FE (0n - 00> : the empirical standard errors (ESE) and the estimated

standard error based on the asymptotic theory (ASE). Table 1 show that the means of
the estimated parameters are satisfactorily close to their theoretical values, especially for
large sample sizes. Moreover the two estimations of the standard deviations, the ESE and
ASE | are very similar.



Table 1: The finite sample behaviour of EbE-PQMLE for the Bivariate INAR model
| BP-INAR(1), E; ~ BP(2,3,2)
n W1.0:4 a11.0:0.2 a12,0:0.4 W2.0:5 0422.0:0.3 a21,0:0.4

500 0 | 4.047 0.199 0.398 5.070 0.295 0.399
ESE | 0.544 0.042 0.038 0.579 0.042 0.043
ASE | 0.544 0.041 0.038 0.591 0.041 0.045

1000 6 | 4.045 0.197 0.399 5.039 0.298 0.400
ESE | 0.395 0.030 0.027 0.408 0.029 0.032
ASE | 0.386 0.029 0.027 0.417 0.029 0.032

5 Conclusion

EbE-PQMLE provides a general way for estimating the conditional mean parameters of
the multivariate time series of counts. If the conditional means are correctly specified, un-
der some regularity conditions, the EbE-PQMLE is consistent and asymptotically normal.
The results of this work can be applied to a large variety of counts time series models, as
the multivariate INGARCH and multivariate INAR models.

6 Appendix

For the consistency of EBE-PQMLE we assume that

A1 We have 0,9 € ©4 where O, is compact.

A2 The process X, is stationary and ergodic.

A3 X\;1(04) = Ag1(0a0) almost surely if and only if 0; = 04
A4 Xd_t(ﬁd) > w, for some w > 0.

The next two assumptions are for demonstrate that the initial values have no effects on
the asymptotic properties of EBE-PQMLE.

A5 limy_aq; =0  and limy_o Xgiaa; =0, where agy = supg,co, Xd,t(ed) — Aat(04)],

A6 lim, o SUpg,cv(o,) Zd,n(ed) — Lgn(04)| = 0,a.s.
AT FE wd,l(ed)‘ < oo and if Gd 7& Gd,o, E€d71(9d) < E@d,l(ed.o)

A8 any 0, # 040 has neighbourhood V'(64) such that limsup,, ., Supg-cy (o, Lan(0) <

lim 1rlfn—)oo zd.n (ed.O)



For the asymptotic normality

A9 If 0 € ©4, where © denotes the interior of ©.
A10 The existence of continuous second-order derivatives for \z; and Xd_t
The next assumption is introduced to handle initial values.

A11 by, by Xae and agidg Xqy are of order O(t~) for some k > 1/2,

where

g (02) _ O0Aae(ba)
89d aeal

1 0Aat(ba)
Aat(04) 004

bgt = sup
04€04

1 OXhas(6y)
Xd.t(ed) aQd

Y

04€04

}

dg; = sup max {'

A12 The matrix J and [ are existent and .J is invertible
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