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Résumé. Nous étudions le comportement asymptotique d’estimateurs à noyau de la
densité pour des suites de données spatiales dépendantes discrétisées, localement non-
stationnaire et convergent vers une suite stationnaire de données spatiales. Notre étude
porte essentiellement sur le biais et la normalité asymptotique des estimateurs.

Mots-clés. Estimation à noyau, données spatiales, dépendance faible, non-stationnarité

Abstract. We investigate the asymptotic behavior of binned kernel density estimators
for dependent and locally non-stationary random fields converging to stationary random
fields. We focus on the study of the bias and the asymptotic normality of the estimators.

Keywords. Kernel estimator, spatial data, weak dependance, non-stationarity

1 Introduction

In many practical situations, one can be concerned with the statistical study of an un-
observed stationary random fields (X∗i )i∈ZN , N ∈ N at the place of which a sequence of
random fields (Xi)i∈ZN is observed and both series are linked by an equation of the form

Xi = ϑ(i) + (1 + ζ(i))X∗i , i ∈ ZN , (1.1)

where ϑ and ζ are some functions defined on ZN . Denoting by f ∗ the density function
(with respect to Lebesgue measure) of the stationary distribution of (X∗i )i∈ZN , statistical
inferences of interest can be testing hypothesis on f ∗ or estimating this function. It is clear
that such works can only be done trough the non-stationary (Xi)i∈ZN defined in (1.1) and
studied for instance in [6]. In the present paper, we show that under some conditions, the
so-called binned kernel density estimator (BKDE) based on (Xi)i∈ZN is consistent to f ∗
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and is asymptotically normal. We study the BKDE instead of the classical kernel density
estimator (KDE) because of its lower coast computational advantage.

Let n1, . . . , nN be positive integers. Denote by n the N -dimensional vector (n1, ..., nN)
and by In =

∏N
k=1 [1, . . . , nk], a finite rectangular domain of the integer lattice points in

N -dimensional Euclidian space ZN . Taking in (1.1) ϑ = ζ = 0, the Rosenblatt [7] kernel

density estimator f̂ of f ∗ is defined by

f̂(x) =
1

n̂h

∑
i∈In

K

(
x−Xi

h

)
, x ∈ R, (1.2)

where n̂ is the finite product n1 . . . nN , h = h(n) is the smoothing parameter and K is a
bounded integrable real-valued function defined on R, called kernel.

It is well known that (1.2) has a high computation coast. The most popular way to
reduce this coast is to prebin the data, an operation which leads to the BKDE studied for
instance in Hall [2], Scott and Shearter [8], Hall and Wand [1] and Holmström [4]. The
BKDE can be seen as aproximations of KDE, or as direct estimators of f ∗. They have
the general form

f̃(x) =
1

n̂h

∑
j∈Z

K

(
x− aj
h

)∑
i∈In

T

(
Xi − aj

δ

)
, x ∈ R, (1.3)

where {aj} = {a0 + jδ}j∈Z is a given grid points with an arbitrary origin a0 ∈ R, T is a
kernel with window width δ, and h and K are as above.

The aim is the study of the behavior of f̃ for local non-stationry α-mixing random
fields. That is, for α-mixing random fields {Xi}i∈ZN for which there exists a finite set
of neighboring sites I∗n ⊂ In such that the sequence {Xi}i∈I∗n is possibly non-stationary
and the sequence {Xi}i∈In−I∗n is stationary with a stationary distribution different from
at least that of one of the Xi, i ∈ I∗n. For example, for the series satisfying (1.1), we
consider the cases where ϑ(i) and ζ(i) tend to zero as i tends to infinity.

Denote by bxc the integer closest to x and by [x] the largest integer less than or
equal to x. For δ > 0 and an arbitrary a0 ∈ R, define the real-valued function a by
a(y) = δ b(y − a0)/δc+a0, for rounding to the nearest value, or a(y) = δ [(y − a0)/δ]+a0,

for rounding down. For a clear presentation, we restrict ourselves to the cases where f̃ is
defined with T (y) = I(y ∈ [0, 1]) or with T (y) = I(y ∈ [−1/2, 1/2)). More precisely, we
consider

f̃(x) =
1

nh

∑
i∈In

K

(
x−Xi

h
+
δ

h
Zi

)
, x ∈ R, (1.4)

where for i ∈ In, Zi = (Xi − a(Xi)) /δ ∈ (0, 1) for rounding down or Zi ∈ [−1/2, 1/2) for
rounding to the nearest value.

In Section 2, we list the notations and the sequence of assumptions considered along
the paper. In Section 3, we state our mains results.
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2 General assumptions

For all i = (i1, . . . , iN) ∈ In, |i| = maxk=1,...,N |ik|. We use the notation n → ∞ to
mean that mink=1,...,N nk → ∞ and maxj,k=1,...,N(nj/nk) < C for some generic constant
C > 0. The total variation norm of a real-value function $ is denoted by ||$||V , and if∫
$p(x)dx < ∞, its Lp-norm is defined by ||$||p =

(∫
$p(x)dx

)1/p
. For simplicity, we

only treat the case where I∗n contains only one single site i0 of In. We make the following
assumptions:

(A1) :

• For all i ∈ In, Xi has a cumulative distribution function Fi with density function fi,
both continuous.
• There exists a strictly stationary random field {X∗i }i∈ZN with continuous distribution
and density functions F ∗ and f ∗ respectively.
• For |j− i| > 0, (Xi, Xj) has a continuous distribution function Fi,j with a continuous
density function fi,j.
• For |j− i| > 0, (X∗i , X

∗
j ) has a continuous distribution function F ∗|i−j| with a continuous

density function f ∗|i−j|.

• For |i− i0| < |j− i0| and |i− i0| → ∞, and for some non-increasing function η which
satisfies

∑
i∈In η (|i− i0|) <∞, as n→∞,∣∣Fi,j − F ∗|j−i|
∥∥
V

= O (η (|i− i0|)) −→ 0 and ‖Fi − F ∗‖V = O (η (|i− i0|)) −→ 0.

(A2) :

• The nonnegative functionK is bounded, symmetric, absolutely continuous and piecewise
differentiable with a bounded derivative, and is such that

∫
K(x)dx = 1,

∫
x2K(x)dx,∫

xK ′(x)dx, supx∈R |K ′(x)| and
∫
|K ′(x)| dx are finite.

• The sequences h = h(n̂) and δ = δ(n̂) are positive and are such that h −→ 0, δ −→ 0,
δ/h −→ 0, n̂h −→∞, as n→∞.

(A3) :

• The sequences of random fields {Xi}i∈ZN and {X∗i }i∈ZN are α-mixing with the same
mixing rate. That is, for all u, v > 0,

max
U,V⊂ZN

sup
A∈UU(u),B∈VV (v)

|P (A ∩B)− P (A)P (B)| = αu,v(m) −→ 0 as m→∞,

where UU(u) and VV (v) are respectively the σ-algebras spanned by (Xi, i ∈ U,Card(U) ≤ u)
and (Xj, j ∈ V,Card(V ) ≤ v) with inf i∈U(u),j∈V (v) |i− j| ≥ m, and αu,v(m) is an increasing
function of u and v, and a decreasing function of m. Here, we take αu,v(n) = ζu,v α (n)→ 0
as n→∞, for all u and v > 0, where ζu,v is an increasing function of u and v, and α (n)
is a decreasing function of n.
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• There exist ν > 0 and c ≥ 3, such that for all u, v ∈ N∗, u + v ≤ c, u, v ≥ 2,∑
r≥1(r+ 1)N(c−u+1)−1[α(r)]1/λ <∞ with λ = (c+ ν)/ν, and for h = h(n̂) there exists an

increasing sequence m = m(n̂) satisfying hmN −→ 0, and h−1/λ
∑∞

k=m k
N−1α(k)1/λ −→ 0

as n→∞.

3 Main results

Our main results are on the study of the bias of f̃ with respect to the stationary density
f ∗. The proofs of our results are based on the same techniques as those of [5] and [3].

Proposition 1 Under the assumptions (A1)-(A2), the binned kernel estimator f̃ is an
asymptotically unbiased estimator of f ∗. Moreover,

E
[
f̃(x)

]
− f ∗(x) = E

[
f̂ ∗(x)− f ∗(x)

]
+O

(
δ

h
+

1

n̂h

)
(3.1)

where E
[
f̂ ∗(x)− f ∗(x)

]
stands for the bias of the Rosenblatt estimator of f ∗ based on

(X∗i )i∈ZN .

Proposition 2 Under the assumptions (A1) and (A2)

MISE
(
f̃(x)

)
−MISE

(
f̂ ∗(x)

)
= O

(
1

n̂
+
δ

h
+ δ

∫
∆

udu+
1

n̂h

)
.

For m = o(n̂1/N), if

1

n̂h

∞∑
k=m

kN−1α(k)1/λ −→ 0 as n→∞,

then
∫
E
[
f̃(x)− f ∗(x)

]2
dx tends to 0 as n tends to infinity.

Proposition 3 Under the assumptions (A1)-(A3), for m = o
(
n̂1/N

)
the mean square

quadratic difference between f̃ and f̂ is given by :

E

{[
f̃(x)− f̂(x)

]2
}

= O

(
δ2

h2

)
.

Theorem 1 Under the assumptions (A1) and (A2), for m = o(n̂1/N), if

1

n̂h
h−1/λ

∞∑
k=m

kN−1 α (k)1/λ −→ 0 as n→∞,

then the binned kernel estimator f̃ converges in mean square to f ∗.

4



Theorem 1 is an immediate consequence of the following triangle inequality√
E
[
f̃(x)− f ∗(x)

]2

≤
√
E
[
f̃(x)− f̂(x)

]2

+

√
E
[
f̂(x)− f ∗(x)

]2

, (3.2)

Proposition 3 and the following lemma.

Lemma 1 Under the assumptions (A1) and (A2), if there exists m = o
(
n̂1/N

)
such that

1

n̂h
h−1/λ

∞∑
k=m

kN−1 α (k)1/λ −→ 0 as n→∞,

then the Rosenblatt estimator f̂ converges to f ∗ in mean square. Moreover, if assumption
(A3) is satisfied, then

E
[
f̂(x)− f ∗(x)

]2

=
1

n̂h
‖K‖2

2 f
∗ (x) + o

(
n̂−1
)

+O

(
mN

n̂
+

1

n̂h
h−1/λ

∞∑
k=m

kN−1α1,1 (k)1/λ +
1

n̂2h2

)
. (3.3)

Proposition 3 shows that the first term in the right-hand side of (3.2) tends to zero, and
Lemma 1 shows that the second term also tends to zero. This establishes Theorem 1.

Define
Sn =

√
n̂h
[
f̃(x)− Ef̃(x)

]
.

Theorem 2 Assume that (A1)-(A3) hold. Let m = o (`) and ` = n̂(1−β)/N , β ∈ (0, 1). If

n̂βζ`N ,`N

[
α(m) +

∞∑
i=1

iN−1α
(
i
(
m+ `

))]
−→ 0, n→∞, (3.4)

then for h = Cnβ0 , 0 < β0 < β, Sn converges in distribution to a zero-mean Gaussian
random variable with variance σ2(x) = f ∗(x)||K||22.
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