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Résumé. L’intérét croissant pour la médecine personnalisée crée une demande im-
portante de modéle prédictifs. De nombreux modéles statistiques et stratégies ont déja
été discutés pour construire des outils pronostiques. Simultanément, les capacités pronos-
tiques de nombreux facteurs de risques et nouveaux biomarqueurs sont aujourd’hui éval-
ués. En pratique, ceci complique fortement le choix d’une stratégie, parmi les nombreuses
possibles, pour construire un modéle prédictif. Leur comparaison objective est une tache
délicate.

Pour comparer deux stratégies de prédiction, une technique couramment utilisée con-
siste a diviser les données en deux : un “échantillon d’apprentissage”, utilisé pour dévelop-
per les deux outils de prédiction, et un “échantillon test”, utilisé pour les comparer. Mal-
heureusement, les conclusions dépendent souvent de la facon dont les données ont été
divisées. Van de Wiel et al. (2009) ont récemment proposé une approche par test basée
sur de multiples scissions des données. Les avantages de ’approche incluent son implémen-
tation aisée et son universalité, qui permettent de comparer des stratégies de prédiction
trés diverses. Elle est également générale en ce qui concerne le critére utilisé pour évaluer
les capacités pronostiques.

Des extensions aux situations incluant la présence de données censurées et de risques
concurrents sont présentées. Nous discutons aussi de nouveaux résultats concernant les
hypothéses de la méthode et le controle de son erreur de type-I. Une application a la
prédiction d’événements cardiovasculaires est présentée. L’objectif est de comparer des
stratégies de prédiction basées sur des électrocardiogrammes. Les données d’une cohorte
Danoise de grande taille sont analysées (n = 12 877).

Mots-clés. Courbe ROC, modéles de prédiction, risques concurrents, multiplicité des
tests, test d’hypothése, validation croisée.

Abstract. Boosted by the growing interest in personalized medicine, the demand for
new prediction tools is currently strongly increasing. Many statistical models and strate-
gies have already been discussed to build prognostic tools. Meanwhile, an increasing
number of risk factors and new biomarkers are nowadays available for making predic-
tion. In practice, challenge is to choose among different strategies for building prediction
models. Fair comparison of prediction strategies is a challenging task.



For comparing two prediction strategies, a commonly applied technique consists of
splitting the data once into two data sets: a "learning sample", used to train the two pre-
diction tools, and a "test sample", used to compare them. Unfortunately, the results often
depend on how the data were split. Recently, van de Wiel et al. (2009) proposed a testing
approach based on multiple splits of the data. The strengths of the approach include
its computational ease and universality, which enable to compare arbitrary prediction
strategies. It is also general with respect to the prediction accuracy criterion.

Extensions to right censored data and situations with competing risks are discussed.
We further provide new insights regarding the underlying assumptions and type-I er-
ror control of the original test. Applications to the prediction of cardiovascular events
illustrate the potential of the new approach. The aim is to compare risk prediction strate-
gies based on electrocardiogram records. Large data from a Danish cohort are analyzed
(n = 12,877).

Keywords. Competing risks, hypothesis testing, cross-validation, multiple testing,
prediction models, ROC curve.

1 Background

The use of risk prediction scores based on statistical modeling is common in cardiology.
For instance, current guidelines use prediction scores to determine whether the risk of
stroke is sufficiently high to merit anticoagulation therapy [3]. Typical risk scores in
cardiology estimate the probability that a person experiences a cardiovascular event be-
fore a time point ¢ (e.g. ¢ = 5 years), which is often called the t-year absolute risk of
cardiovascular events.

Numerous statistical methods have been proposed for building prediction scores based
on statistical modeling [10]. Meanwhile, an increasing number risks factors and new
biomarkers have emerged. Therefore, there is nowadays room for investigating many
different strategies for building prediction scores. From a practical point of view, it
remains, however, challenging to compare them.

In this talk, we address the question of testing whether one approach is better than
another for building a risk prediction score with a given data set. We consider the general
setting in which the two approaches can be completely unrelated to each other. To com-
pare the performance of the two strategies, we focus in this talk on the area under the
ROC curve. Our approach enables to properly compare t-year predictions of cardiovas-
cular events. The method handles censored data and properly deals with the competing
risk of non-cardiovascular death.



2 Method

Let X be a vector of covariates. Asin Gerds and van de Wiel (2011), we define a prediction
strategy as follows. Based on the training data set L,,, a prediction strategy S; selects a
prediction model S;(L,,), such that for every value z, the model predicts the conditional
probability that the event of interest occurs before time ¢ given X = x. Without loss of
generality, at this stage we do not assume any restriction on the prediction strategies St
and SP that we aim to compare.

Hereafter 6(t) denotes the area under the time-dependent ROC curve at time ¢, which
is a well established concordance index. In our application the interpretation of the value
of 6(t) is the following: “The probability that the predicted risk of a person who dies from
cardiovascular events before time point t is greater than that of a person either alive or
dead from non cardiovascular death at time t.”.

2.1 Single split approach

The single-split approach consists of randomly splitting the available data D,,, of size n,
into a learning sample L,,, of size m, and a test sample T,_,,, of size n — m, i.e,

Dn = *Cm U 7:1—77’7, with Em N 7:1,—m - ®7

where m < n. From this partition, the idea consists of training the two rival prediction
strategies using L,, before comparing them using 7, _,.

We further denote by 62 (¢) and 2 (t) the prediction performances of prediction
strategies S{* and SP trained on the learning sample £,,. These parameters evaluate the
expected performances of the predictions from models S{(£,,) and SZ(L,,), when applied
to an independent population of subjects that could benefit from the predictions.

2.2 The single-split test

Using data 7,_,,, the idea consist of performing a one-sided test for the difference in
prediction performance between models S#(L,,,) and SP(L,,). A one-sided test is usually
more relevant than a two-sided because of the asymmetric preference between the two
strategies. The corresponding null hypothesis is,

Hom(t): 0z, () < OF, (). (1)

Tests for comparing areas under the ROC curve, given a learning sample, have previ-
ously been suggested. The test of DeLong et al. (1988) covers most of the usual settings,
with uncensored data. Another method can be used with survival data, to deal with
censoring and competing risks [2]. The latter is used in this talk as we work with right
censored survival data.



2.3 Towards the multi-split test

Most of the time, the null hypothesis that we would like to consider is not exactly the
one displayed at (1). Instead, this is:

Ho"(t) = 0p,(t) <05, (1), (2)

which corresponds to the situation where the two prediction strategies are trained on
the entire data D,,. Indeed, we want to build prediction models which are as accurate as
possible and so we aim to use the entire available data to fit them. The two null hypotheses
HE™ (t) and HE" (t) are different because of £,, € D,. However, they address the same
clinical research question. Loosely speaking, they both aim to answer the question: “Is
prediction strateqy A better than B for building a clinical prediction model using my data?”.

Hereafter, we consider that testing the null hypotheses Hy™(t) and Hy"(t) displayed
at (1) and (2) is similar enough to be considered as “almost equivalent”. Without entering
into details, we therefore assume that either (i) for the clinical interpretation it does not
hurt to see H5™(t) as a reasonable approximation of HE"(t), for any L,,, or (ii) the
type-I errors of the tests associated with H5™ (t) and H5" (t) are close enough such as the

difference can be neglected. We will get back to this point in the discussion section of our
talk.

2.4 Multi-split approach

The multi-split approach consists of repeating the single-split approach many times, say
I = 400 times, before aggregating the results to conclude. It corresponds to the following
algorithm:

1. Fori=1,...,1I:

l.a. Randomly split the data D, into D,, = £! UT" =~ with £ N7 =0, as
in Section 2.1.

1.b. Apply strategies A and B on data LI to train the prediction models SA(L¢)
and SP(L!)), as previously defined.

l.c. Using data 7, , compute p;, that is the p-value corresponding to the null
hypothesis Hj(t) == Hg™(t) - 64, (t) < 62 (1), as in Section 2.2.

2. Aggregate pq,...,pr and conclude using one of the mathematical results described
in the talk. One option, which is based on the following Lemma 1, is: if the median
of {2py,...,2pr} is smaller than a, then reject Ho(t) := N_, Hi(t) ~ Hy"(t) with
confidence level a.

Lemma 1. Let v € (0,1) and p, = min{1,q,(p1/7,...,p1/7)} where q,(-) is the em-
pirical y-quantile function and py,...,pr denote I p-values under the null, i.e. ¥(i,u) €
{1,...,1} x (0,1) P(p; <u) <wu. Then, Va € (0,1) P(p, <a) <a.
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Proof. A proof is easily derived using arguments as in Meinshausen et al. (2009). O

Remark 1. The Lemma 1 does not make any assumption on the correlation structure
of the p-values. Under this assumption of arbitrary dependencies, it can be shown that
the control of the type-1 error is sharp [6,9]. Sharper results are available under stronger
assumptions [9,11].

3 Application

The QT interval on the surface electrocardiogram (ECG) represents the time from the
beginning of ventricular depolarization to the end of ventricular repolarization (Figure 2).
Long QT intervals have been shown to be associated with higher risks of cardiovascular
events [8].

We present a simple but pedagogical comparison of two prediction strategies for dis-
criminating subjects at high risk of cardiovascular events. The first is based on the value
of the QT-interval only. The second combines the value of the QT-interval and the age of
the patient through a regression model. A nonlinear effect of the QT-interval is consid-
ered. Separate cause specific regressions for cardiovascular and non-cardiovascular deaths
are combined into an absolute 5-year risk prediction model. This modeling strategy is
suitable to account for the competing risk setting (Figure 1).

The Data are comprised of n = 12,877 men, aged 70-80 years, who had an ECG
taken by a general practitioner in the region of Copenhagen [8]. The follow-up covers a
period of 11 years (2001-2011). Within the 5 years following the ECG, 23% of subjects
were lost to follow-up (censored), 6% died from non-cardiovascular deaths and 15% from
cardiovascular events.

The application aims to illustrate and carefully explain the details of the method.



Bibliographie

[1] Andersen, P. K., & Keiding, N. (2012). Interpretability and importance of functionals
in competing risks and multistate models. Statistics in medicine, 31(11-12), 1074-1088.
[2] Blanche, P., Dartigues, J.-F., and Jacqmin-Gadda, H. (2013). Estimating and com-
paring time-dependent areas under receiver operating characteristic curves for censored
event times with competing risks. Statistics in Medicine, 32(30):5381-5397

[3] Camm et al, A. (2010). Guidelines for the management of atrial fibrillation: The task
force for the management of atrial fibrillation of the european society of cardiology (ESC).
FEuropean heart journal, 31:2369-2429.

[4] DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
Areas Under Two or More correlated Receiver Operating Characteristic Curves : A Non-
parametric Approach. Biometrics, 44(3):837-845.

[5] Gerds, T. A. and van de Wiel, M. A. (2011). Confidence scores for prediction models.
Biometrical Journal, 53(2):259-274.

[6] Lehmann, E. L. and Romano, J. P. (2005). Generalizations of the familywise error
rate. The Annals of Statistics, 33(3):1138-1154.

[7] Meinshausen, N., Meier, L., and Biihlmann, P. (2009). P-values for high-dimensional
regression. Journal of the American Statistical Association, 104(488).

[8] Nielsen, J. B., Graff, C., Rasmussen, P. V., Pietersen, A., Lind, B., Olesen, M. S.,
Struijk, J. J., Haunsg, S., Svendsen, J. H., K¢ ber, L., Gerds, T. a., and Holst, A. G.
(2014). Risk prediction of cardiovascular death based on the QTc interval: evaluating age
and gender differences in a large primary care population. Furopean heart journal.

[9] Roquain, E. (2010). Type I error rate control for testing many hypotheses: a survey
with proofs. Journal de la Societe Francaise de Statistique, 152(2):3-38.

[10] Steyerberg, E. (2009). Clinical prediction models: a practical approach to develop-
ment, validation, and updating. Springer.

[11] van de Wiel, M. A., Berkhof, J., & van Wieringen, W. N. (2009). Testing the
prediction error difference between 2 predictors. Biostatistics, 10(3), 550-560.



