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Résumé. L'intérêt croissant pour la médecine personnalisée crée une demande im-
portante de modèle prédictifs. De nombreux modèles statistiques et stratégies ont déjà
été discutés pour construire des outils pronostiques. Simultanément, les capacités pronos-
tiques de nombreux facteurs de risques et nouveaux biomarqueurs sont aujourd'hui éval-
ués. En pratique, ceci complique fortement le choix d'une stratégie, parmi les nombreuses
possibles, pour construire un modèle prédictif. Leur comparaison objective est une tâche
délicate.

Pour comparer deux stratégies de prédiction, une technique couramment utilisée con-
siste à diviser les données en deux : un �échantillon d'apprentissage�, utilisé pour dévelop-
per les deux outils de prédiction, et un �échantillon test�, utilisé pour les comparer. Mal-
heureusement, les conclusions dépendent souvent de la façon dont les données ont été
divisées. Van de Wiel et al. (2009) ont récemment proposé une approche par test basée
sur de multiples scissions des données. Les avantages de l'approche incluent son implémen-
tation aisée et son universalité, qui permettent de comparer des stratégies de prédiction
très diverses. Elle est également générale en ce qui concerne le critère utilisé pour évaluer
les capacités pronostiques.

Des extensions aux situations incluant la présence de données censurées et de risques
concurrents sont présentées. Nous discutons aussi de nouveaux résultats concernant les
hypothèses de la méthode et le contrôle de son erreur de type-I. Une application à la
prédiction d'événements cardiovasculaires est présentée. L'objectif est de comparer des
stratégies de prédiction basées sur des électrocardiogrammes. Les données d'une cohorte
Danoise de grande taille sont analysées (n = 12 877).

Mots-clés. Courbe ROC, modèles de prédiction, risques concurrents, multiplicité des
tests, test d'hypothèse, validation croisée.

Abstract. Boosted by the growing interest in personalized medicine, the demand for
new prediction tools is currently strongly increasing. Many statistical models and strate-
gies have already been discussed to build prognostic tools. Meanwhile, an increasing
number of risk factors and new biomarkers are nowadays available for making predic-
tion. In practice, challenge is to choose among di�erent strategies for building prediction
models. Fair comparison of prediction strategies is a challenging task.
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For comparing two prediction strategies, a commonly applied technique consists of
splitting the data once into two data sets: a "learning sample", used to train the two pre-
diction tools, and a "test sample", used to compare them. Unfortunately, the results often
depend on how the data were split. Recently, van de Wiel et al. (2009) proposed a testing
approach based on multiple splits of the data. The strengths of the approach include
its computational ease and universality, which enable to compare arbitrary prediction
strategies. It is also general with respect to the prediction accuracy criterion.

Extensions to right censored data and situations with competing risks are discussed.
We further provide new insights regarding the underlying assumptions and type-I er-
ror control of the original test. Applications to the prediction of cardiovascular events
illustrate the potential of the new approach. The aim is to compare risk prediction strate-
gies based on electrocardiogram records. Large data from a Danish cohort are analyzed
(n = 12, 877).

Keywords. Competing risks, hypothesis testing, cross-validation, multiple testing,
prediction models, ROC curve.

1 Background

The use of risk prediction scores based on statistical modeling is common in cardiology.
For instance, current guidelines use prediction scores to determine whether the risk of
stroke is su�ciently high to merit anticoagulation therapy [3]. Typical risk scores in
cardiology estimate the probability that a person experiences a cardiovascular event be-
fore a time point t (e.g. t = 5 years), which is often called the t-year absolute risk of
cardiovascular events.

Numerous statistical methods have been proposed for building prediction scores based
on statistical modeling [10]. Meanwhile, an increasing number risks factors and new
biomarkers have emerged. Therefore, there is nowadays room for investigating many
di�erent strategies for building prediction scores. From a practical point of view, it
remains, however, challenging to compare them.

In this talk, we address the question of testing whether one approach is better than
another for building a risk prediction score with a given data set. We consider the general
setting in which the two approaches can be completely unrelated to each other. To com-
pare the performance of the two strategies, we focus in this talk on the area under the
ROC curve. Our approach enables to properly compare t-year predictions of cardiovas-
cular events. The method handles censored data and properly deals with the competing
risk of non-cardiovascular death.
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2 Method

LetX be a vector of covariates. As in Gerds and van de Wiel (2011), we de�ne a prediction
strategy as follows. Based on the training data set Lm, a prediction strategy St selects a
prediction model St(Lm), such that for every value x, the model predicts the conditional
probability that the event of interest occurs before time t given X = x. Without loss of
generality, at this stage we do not assume any restriction on the prediction strategies SAt
and SBt that we aim to compare.

Hereafter θ(t) denotes the area under the time-dependent ROC curve at time t, which
is a well established concordance index. In our application the interpretation of the value
of θ(t) is the following: �The probability that the predicted risk of a person who dies from
cardiovascular events before time point t is greater than that of a person either alive or
dead from non cardiovascular death at time t.�.

2.1 Single split approach

The single-split approach consists of randomly splitting the available data Dn, of size n,
into a learning sample Lm, of size m, and a test sample Tn−m, of size n−m, i.e,

Dn = Lm ∪ Tn−m with Lm ∩ Tn−m = ∅,

where m < n. From this partition, the idea consists of training the two rival prediction
strategies using Lm before comparing them using Tn−m.

We further denote by θALm(t) and θBLm(t) the prediction performances of prediction
strategies SAt and SBt trained on the learning sample Lm. These parameters evaluate the
expected performances of the predictions from models SAt (Lm) and SBt (Lm), when applied
to an independent population of subjects that could bene�t from the predictions.

2.2 The single-split test

Using data Tn−m, the idea consist of performing a one-sided test for the di�erence in
prediction performance between models SAt (Lm) and SBt (Lm). A one-sided test is usually
more relevant than a two-sided because of the asymmetric preference between the two
strategies. The corresponding null hypothesis is,

HLm0 (t) : θALm(t) ≤ θBLm(t). (1)

Tests for comparing areas under the ROC curve, given a learning sample, have previ-
ously been suggested. The test of DeLong et al. (1988) covers most of the usual settings,
with uncensored data. Another method can be used with survival data, to deal with
censoring and competing risks [2]. The latter is used in this talk as we work with right
censored survival data.
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2.3 Towards the multi-split test

Most of the time, the null hypothesis that we would like to consider is not exactly the
one displayed at (1). Instead, this is:

HDn
0 (t) : θADn

(t) ≤ θBDn
(t), (2)

which corresponds to the situation where the two prediction strategies are trained on
the entire data Dn. Indeed, we want to build prediction models which are as accurate as
possible and so we aim to use the entire available data to �t them. The two null hypotheses
HLm0 (t) and HDn

0 (t) are di�erent because of Lm ( Dn. However, they address the same
clinical research question. Loosely speaking, they both aim to answer the question: �Is
prediction strategy A better than B for building a clinical prediction model using my data? �.

Hereafter, we consider that testing the null hypotheses HLm0 (t) and HDn
0 (t) displayed

at (1) and (2) is similar enough to be considered as �almost equivalent�. Without entering
into details, we therefore assume that either (i) for the clinical interpretation it does not
hurt to see HLm0 (t) as a reasonable approximation of HDn

0 (t), for any Lm, or (ii) the
type-I errors of the tests associated with HLm0 (t) and HDn

0 (t) are close enough such as the
di�erence can be neglected. We will get back to this point in the discussion section of our
talk.

2.4 Multi-split approach

The multi-split approach consists of repeating the single-split approach many times, say
I = 400 times, before aggregating the results to conclude. It corresponds to the following
algorithm:

1. For i = 1, . . . , I:

1.a. Randomly split the data Dn into Dn = Lim ∪ T in−m with Lim ∩ T in−m = ∅, as
in Section 2.1.

1.b. Apply strategies A and B on data Lim to train the prediction models SAt (Lim)
and SBt (Lim), as previously de�ned.

1.c. Using data T in−m, compute pi, that is the p-value corresponding to the null

hypothesis Hi
0(t) := H

Lim
0 (t) : θALim(t) ≤ θBLim(t), as in Section 2.2.

2. Aggregate p1, . . . , pI and conclude using one of the mathematical results described
in the talk. One option, which is based on the following Lemma 1, is: if the median
of {2p1, . . . , 2pI} is smaller than α, then reject H0(t) := ∩Ii=1Hi

0(t) ≈ HDn
0 (t) with

con�dence level α.

Lemma 1. Let γ ∈ (0, 1) and p̃γ = min {1, qγ(p1/γ, . . . , pI/γ)} where qγ(·) is the em-
pirical γ-quantile function and p1, . . . , pI denote I p-values under the null, i.e. ∀(i, u) ∈
{1, . . . , I} × (0, 1) P(pi ≤ u) ≤ u. Then, ∀α ∈ (0, 1) P(p̃γ ≤ α) ≤ α.

4



Alive

Cardiovascular
death

Non-
cardiovascular

death

(1) Competing risks setting. text text text text

text

(2) QT-interval on the elec-

trocardiogram.

Proof. A proof is easily derived using arguments as in Meinshausen et al. (2009).

Remark 1. The Lemma 1 does not make any assumption on the correlation structure
of the p-values. Under this assumption of arbitrary dependencies, it can be shown that
the control of the type-I error is sharp [6,9]. Sharper results are available under stronger
assumptions [9,11].

3 Application

The QT interval on the surface electrocardiogram (ECG) represents the time from the
beginning of ventricular depolarization to the end of ventricular repolarization (Figure 2).
Long QT intervals have been shown to be associated with higher risks of cardiovascular
events [8].

We present a simple but pedagogical comparison of two prediction strategies for dis-
criminating subjects at high risk of cardiovascular events. The �rst is based on the value
of the QT-interval only. The second combines the value of the QT-interval and the age of
the patient through a regression model. A nonlinear e�ect of the QT-interval is consid-
ered. Separate cause speci�c regressions for cardiovascular and non-cardiovascular deaths
are combined into an absolute 5-year risk prediction model. This modeling strategy is
suitable to account for the competing risk setting (Figure 1).

The Data are comprised of n = 12, 877 men, aged 70-80 years, who had an ECG
taken by a general practitioner in the region of Copenhagen [8]. The follow-up covers a
period of 11 years (2001-2011). Within the 5 years following the ECG, 23% of subjects
were lost to follow-up (censored), 6% died from non-cardiovascular deaths and 15% from
cardiovascular events.

The application aims to illustrate and carefully explain the details of the method.
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