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Résumé. La loi asymptotique de l’estimateur du quasi-maximum de vraisemblance
gaussien est établie pour la vaste classe des modèles GARCH asymétriques avec covariables
exogènes. La vraie valeur du paramètre n’est pas contrainte à se situer à l’intérieur de
l’espace des paramètres, ce qui nous permet de développer des tests de significativité des
paramètres. En particulier, la pertinence des variables exogènes peut être évaluée. Les
résultats sont obtenus sans faire l’hypothèse que les innovations sont indépendantes, ce
qui permet de prendre en compte différents ensembles d’information. Des expériences de
Monte Carlo et des applications sur séries financières illustrent les résultats asymptotiques.
En particulier, une étude empirique montre que la volatilité réalisée est une covariable
utile pour prévoir les carrés des rendements, mais ne constitue pas un proxy idéal de la
volatilité.

Mots-clés. Bord de l’espace des paramètres, Convergence forte et loi asymptotique
de l’estimateur du quasi-maximum de vraisemblance gaussien, Loi asymptotique non nor-
male, Modèle APARCH avec variables explicatives, Modèle GARCH-X.

Abstract. The asymptotic distribution of the Gaussian quasi-maximum likelihood
estimator (QMLE) is obtained for a wide class of asymmetric GARCH models with ex-
ogenous covariates. The true value of the parameter is not restricted to belong to the
interior of the parameter space, which allows us to derive tests for the significance of the
parameters. In particular, the relevance of the exogenous variables can be assessed. The
results are obtained without assuming that the innovations are independent, which allows
conditioning on different information sets. Monte Carlo experiments and applications to
financial series illustrate the asymptotic results. In particular, an empirical study demon-
strates that the realized volatility is an helpful covariate for predicting squared returns,
but does not constitute an ideal proxy of the volatility.

Keywords. APARCH model augmented with explanatory variables, Boundary of
the parameter space, Consistency and asymptotic distribution of the Gaussian quasi-
maximum likelihood estimator, GARCH-X models, Non-normal asymptotic distribution,
Power-transformed and Threshold GARCH with exogenous covariates.
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1 Introduction
The GARCH-type models are of the form

εt = σtηt, (1.1)

where the squared volatility σ2
t is the best predictor of ε2

t given a certain information
set Ft−1 available at time t. More precisely, it is assumed that E(ε2

t | Ft−1) = σ2
t > 0,

or equivalently that σt > 0, σt ∈ Ft−1 and E(η2
t | Ft−1) = 1. For the usual GARCH

models, Ft−1 is simply the sigma-field generated by the past returns {εu, u < t}, and
the volatility has a parametric form σt = σ(εu, u < t;θ0). It is however often the case
that some extra information is available, under the form of a vector xt−1 of exogenous
covariates, such as the daily volume of transactions, or high frequency intraday data, or
even series of other returns. It is natural to try to take advantage of the extra information,
in order to improve the prediction of the squares. To incorporate the information conveyed
by {xu, u < t} into Ft−1, researchers have considered GARCH models augmented with
additional explonatory variables, the so-called GARCH-X models, which are of the form
σt = σ(εu,xu, u < t;ϑ0).
Let x+ = max(x, 0) and x− = max(−x, 0). We consider the model defined by{

εt = h
1/δ
t ηt

ht = ω0 +
∑q

i=1 α0i+(ε+
t−i)

δ + α0i−(ε−t−i)
δ +

∑p
j=1 β0jht−j + π′0xt−1

(1.2)

where xt = (x1,t, . . . , xr,t)
′ is a vector of r exogenous covariates. To ensure that ht > 0

with probability one, assume that the covariates are almost surely positive and that the
coefficients satisfy α0i+ ≥ 0, α0i− ≥ 0, β0j ≥ 0, ω0 > 0, δ > 0 and π0 = (π01, . . . , π0r) ≥ 0
componentwise.

Our first objective is to study the asymptotic distribution of the QMLE of the APARCH-
X model when the parameter is not restricted to belong to the interior of the parameter
space.

Our second objective is to propose tests of nullity for one or several components of ϑ0.
This is closely related to the first objective because, due to the positivity constraints on
the components of ϑ0, under the null the true parameter stands at the boundary of the
parameter space.

2 Main results

2.1 Strict stationarity

In this subsection, we are interested in the strictly stationary solutions which will be the
main condition for the consistency of the QMLE. Assuming that p ≥ 2 and q ≥ 2, let the
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vector of dimension 2q + p− 2

Y t =
(
ht+1, . . . , ht−p+2,

(
ε+
t

)δ
,
(
ε−t
)δ
, . . . ,

(
ε+
t−q+2

)δ
,
(
ε−t−q+2

)δ)′
.

It is easy to see that (εt) satisfies (1.2) if and only if

Y t = C0tY t−1 +B0t, (2.1)

where B0t = (ω0 + π′0xt, 0, . . . , 0)′ is a vector of dimension 2q+ p− 2 and C0t is a matrix
depending on (η+

t )δ, (η−t )δ and

ϑ0 = (θ′0,π
′
0)
′
, θ0 = (ω0, α01+, α01−, . . . , α0q+, α0q−, β01, . . . , β0p)

′ .

Now assume that

A1: (ηt,x
′
t) is a strictly stationary and ergodic process, and there exists s > 0 such that

E|η1|s <∞ and E‖x1‖s <∞.

The stationarity relies on the top Lyapunov γ := limt→∞
1
t

log ‖C0tC0,t−1 · · ·C01‖ a.s.
which is well defined in [−∞,+∞).

Lemma 2.1 Suppose A1 is satisfied. If γ < 0 the APARCH-X equation (1.2) (or equiv-
alently (2.1)) admits a unique strictly stationary, non anticipative and ergodic solution

given by Y t = B0t +
∑∞

k=1

(
k∏
i=1

C0,t−i−1

)
B0,t−k. When γ ≥ 0 there exists no stationary

solution to (1.2) and to (2.1).

2.2 Strong consistency of the QMLE

Hamadeh and Zakoian (2011) showed that, for APARCH models, the power parameter δ
is difficult to be estimated in practice. We therefore consider that δ is fixed. A generic
element of the parameter space Θ ⊆ (0,+∞)× [0,+∞)d−1, where d = 2q + p + r + 1, is
denoted by ϑ = (ω, α1+, α1−, . . . , αq+, αq−, β1, . . . , βp,π

′)′.
Let (ε1, . . . , εn) be a realization of length n of the stationary solution (εt) to the

APARCH-X model (1.2), and let (x1, . . . ,xn) be the corresponding observations of the
exogenous variables. Given initial values ε1−q, . . . , ε0, σ̃1−p ≥ 0, . . . , σ̃0 ≥ 0, x0 ≥ 0, the
Gaussian quasi-likelihood is given by

Ln (ϑ) = Ln (ϑ, ε1, . . . , εn,x1, . . . ,xn) =
n∏
t=1

1√
2πσ̃2

t

exp

{
−ε2

t

2σ̃2
t

}
where the σ̃t are defined recursively, for t ≥ 1, by

σ̃δt = σ̃δt (ϑ) = ω +

q∑
i=1

αi+
(
ε+
t−i
)δ

+ αi−
(
ε−t−i
)δ

+

p∑
j=1

βjσ̃
δ
t−j + π′xt−1.
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The QMLE of ϑ0 is defined as an any measurable solution ϑ̂n of

ϑ̂n = arg max
ϑ∈Θ

Ln (ϑ) = arg min
ϑ∈Θ

Q̃n (ϑ) , (2.2)

where

Q̃n (ϑ) =
1

n

n∑
t=1

˜̀
t, ˜̀

t = ˜̀
t (ϑ) =

ε2
t

σ̃2
t

+ ln σ̃2
t . (2.3)

Let Aϑ+(z) =
∑q

i=1 αi+z
i, Aϑ−(z) =

∑q
i=1 αi−z

i and Bϑ(z) = 1−
∑p

j=1 βjz
j. To show the

strong consistency of the QMLE, we need the following assumptions.

A2: E (ηt | Ft−1) = 0 and E (η2
t | Ft−1) = 1, where Ft−1 denotes the σ-field generated by

{εu,xu, u < t}.

A3: ϑ0 ∈ Θ, Θ is compact.

A4: for all i ≥ 1, the support of the distribution of ηt−i given Ft,i, where Ft,i is a σ−field
generated by {ηt−j, j > i,xt−k, k > 0}, is not included in [0,∞) or in (−∞, 0] and
contains at least three points.

A5: γ < 0 and
∑p

j=1 βj < 1 for all ϑ ∈ Θ.

A6: there exists s > 0, such that Ehst <∞ and E|εt|s <∞.

A7: if p > 0, Bϑ0(z) has no common root withAϑ0+(z) andAϑ0−(z); Aϑ0+(1)+Aϑ0−(1) 6=
0 and α0q+ + α0q− + β0p 6= 0 (with the notation α00+ = α00− = β00 = 1).

A8: The variance of x1 is positive definite.

Theorem 2.1 Let ϑ̂n be a sequence of QMLE satisfying (2.2). Then under A1–A8,

ϑ̂n → ϑ0 a.s. as n→∞.

2.3 Asymptotic distribution of the QMLE

The asymptotic distribution of the estimators depends on the following four cases:

Case A : ηt is independent of Ft−1 and all the components of ϑ0 are strictly positive;

Case B : ηt is independent of Ft−1 and at least one component of ϑ0 is equal to zero;

Case C : ηt is not independent of Ft−1 and all the components of ϑ0 are strictly positive;

Case D : ηt is not independent of Ft−1 and at least one component of ϑ0 is equal to zero.

We assume that
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A9: C := limn→∞
√
n(Θ − ϑ0) =

∏d
i=1 Ci, where Ci = [0,+∞) when ϑ0i = 0 and Ci = R

otherwise.

A10: Eη4
t <∞ in Cases A and B, and E|ηt|4+ν <∞ for some ν > 0 in Cases C and D.

A11: E |εt|2δ <∞ and E ‖xt‖2 <∞ in Case B, and E |εt|2δ+8δ/ν <∞ and E ‖xt‖2+8/ν <
∞ in Case D.

A12: in Cases B and D, there exist Hölder conjugate numbers p and q > 1 such that

p−1 + q−1 = 1 and E|εt|2δq <∞, E|εt|2p <∞, E‖xt‖2q <∞.

Theorem 2.2 Under the assumptions of Theorem 2.1 and A9–A12, as n→∞,

√
n(ϑ̂n − ϑ0)

d→ ZC, where Z ∼ N
{

0,J−1IJ−1
}
, (2.4)

J := E

(
∂2`t(ϑ0)

∂ϑ∂ϑ′

)
=

4

δ2
E

(
1

σ2δ
t (ϑ0)

∂σδt (ϑ0)

∂ϑ

∂σδt (ϑ0)

∂ϑ′

)
(2.5)

and

I =
4

δ2
E

[{
E
(
η4
t | Ft−1

)
− 1
} 1

σ2δ
t (ϑ0)

∂σδt (ϑ0)

∂ϑ

∂σδt (ϑ0)

∂ϑ′

]
and ZC = arg infC∈C ‖C −Z‖J .

The next proposition provides estimates for the matrices I and J required to apply
Theorem 2.2. Assumption A12 needs to be slightly reinforced as follow.

A12’: in Cases B and D, there exist Hölder conjugate numbers p and q > 1 such that

p−1 + q−1 = 1 and E|εt|2δq <∞, E|εt|4p <∞, E‖xt‖2q <∞.

Proposition 2.1 Under the assumptions of Theorem 2.2 with A12 replaced by A12’,
strongly consistent estimators of J and I are given by

Ĵn =
4

δ2

1

n

n∑
t=1

1

σ̃2δ
t (ϑ̂n)

∂σ̃δt (ϑ̂n)

∂ϑ

∂σ̃δt (ϑ̂n)

∂ϑ′
(2.6)

and

În =
4

δ2

1

n

n∑
t=1

(
η̂4
t − 1

) 1

σ̃2δ
t (ϑ̂n)

∂σ̃δt (ϑ̂n)

∂ϑ

∂σ̃δt (ϑ̂n)

∂ϑ′
, (2.7)

with η̂t = εt/σ̃t(ϑ̂n).
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Remark 2.1 In Cases A and B, the estimator defined by (2.7) can be replaced by

În =

(
1

n

n∑
t=1

η̂4
t − 1

)
Ĵn. (2.8)

Let ek be the k-th element of the canonical basis of Rd. We will test the hypothesis
that the k-th element of ϑ0 is equal to zero, assuming that the other elements are positive:

H0 : e′kϑ0 = 0 and e′`ϑ0 > 0 ∀` 6= k against H1 : e′kϑ0 > 0. (2.9)

For this testing problem, the Student t-test statistic is defined by

tn(k) =
e′kϑ̂n√
e′kΣ̂ek

, Σ̂ = Ĵ
−1

n ÎnĴ
−1

n .

Denote by χ2
`(α) the α-quantile of the chi-squared distribution with ` degrees of freedom.

As a corollary of Theorem 2.2 and Proposition 2.1, we obtain the following result.

Corollary 2.1 Under the assumptions of Theorem 2.2, the test of rejection region

{t2n(k) > χ2
1(1− 2α)}

has the asymptotic level α under H0 and is consistent under H1 defined in (2.9).
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