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Résumé. La prise en compte de non-stationnarités dans l’étude des séries de max-
ima est un sujet crucial pour la quantification des risques liés à l’évolution du climat.
Pour autant, lorsqu’une série de valeurs extrêmes est modélisée via la loi d’extremum
généralisée (GEV), il peut arriver aux practiciens de ne pas tenir compte de possibles
non-stationnarités, ou encore de tronquer les données pour réduire l’influence de ten-
dances passées. Ici nous adoptons une démarche de simulation stochastique pour étudier
les effets d’une mauvaise spécification de modèle sur l’erreur d’estimation des niveaux
de retour dans le cas où les données simulées suivent indépendamment des distributions
GEV, avec des paramètres de location dépendant ou non du temps. Nos résultats sug-
gèrent qu’en présence d’une tendance linéaire en temps, l’approche par troncature permet
de mieux estimer les niveaux de retour pour de petites périodes de retour, mais dégrade
fortement l’estimation en ce qui concerne les plus grandes périodes de retour. Nous présen-
terons finalement des résultats obtenus sur des séries de maxima annuels issues de mesures
climatiques et hydrologiques enregistrées sur le territoire Suisse depuis plus d’un siècle.
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Abstract. Accounting for possible non-stationarities in series of maxima is of crucial
importance for quantifying risks in a changing climate. However, when appealing to mod-
els relying on the Generalized Extreme Value distribution, it happens that practitioners
do not take such non-stationarities into account, or simply truncate data sets in order
to reduce the influence of past trends. Here we adopt a stochastic simulation approach
for studying the effects of model misspecifications on return level estimation errors in
the case of GEV-distributed simulated data, both with fixed and time-varying location
parameters. Our results suggest that in the case of a location parameter with a linear
trend in time, truncating the data does lead to an improved estimation of return levels
with small return periods, but turns out to degrade estimation for larger return periods.
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Finally, we will present results obtained on series of yearly maxima from climatological
and hydrological series of measures recorded in Switzerland over more than a century.

Keywords. Extreme values, GEV, Time series, Climate sciences

1 Introduction
The study of extreme values in non-stationary contexts have recently received a lot of
attention in climate research [1, 3, 4]. While a few non-stationary approaches have been
proposed to study series of extreme events, stationary GEV models are still commonly
used in practice. One simple rule of thumb, yet a practical approach, when working
with non-stationary extremes under a stationary assumption is to not use all available
data when calculating a return level but to first truncate the data so as to take only a
shorter subset of observations closer to the current state. In this work, we attempt to
answer several questions arising as a consequence of stationarity misspecification. The
questions include, but are not limited to: What is the risk of miscalculation by assuming
stationarity? Is it true that the location parameter at present or in the future are better
estimated if one truncates the data set? What are the effects of parameter mis-estimation
on short- and long-term estimated return levels? To this end, the analysis via stochastic
simulation is carried out on non-stationary Generalized Extreme Value (GEV) data under
several model assumptions. Additional analyses of climatological and hydrological series
of extremes recorded in Switzerland over more than a century will also be discussed.

2 Methodology

2.1 Simulated non-stationary GEV series

Series of stochastically independent GEV distributed observations (Mt) are simulated. In
our benchmark experiment, the shape and scale of the GEV distribution remain constant
and only the location parameter varies as a function of time. That is, we generate Mt ∼
GEV(µ(t), σ, ξ) independently, with a location parameter evolving linearly in time:

µ(t) = µ0 + µ1t. (1)

For illustration, one realization of (Mt) simulated with µ0 = 0, µ1 = 0.01, σ = 1, and
ξ = 0.1 together with the underlying trend are shown in Figure 1a.
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(a) A realization of (Mt), with µ0 = 0 and µ1 = 0.01
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(b) The true return levels and the estimated return levels
with 70y-SM model at the reference time t0 = 70

Figure 1: Simulation of a non-stationary GEV series and comparison between actual and
estimated return levels (at t0 = 70) and those estimated under stationarity assumption.

2.2 Fitted GEV Model

First we assume stationarity and fit a GEV distribution to (Mt) using the whole 70-year
data set. We refer to this model as 70y-SM. Using the ‘extRemes’ R package [6], the
estimates of the parameters obtained from the fitted model are µ̂ = 0.0945, σ̂ = 1.012,
and ξ̂ = 0.2136 while the true parameters (at t0 = 70) are µ = µ0 + 70µ1 = 0.7, σ = 1,
and ξ = 0.1, respectively.

We see that the estimated parameters depart from the true underlying parameters,
especially for the location and shape parameters on this example. Can we find better
estimates by truncating the data set? The answer is yes. If one suspects a linear trend
with respect to time in the location parameter, a simple rule of thumb is to restrict
attention to the most recent observations only. For example, instead of using the full
data (as in the 70y-SM model), one can fit the data to a smaller window of, say, the last
30 years. We will refer to this model as 30y-SM.

We replicate the experiment 500 times. Box-plots of the distributions of estimated
parameters inferred from both the 70y-SM and the 30y-SM models are shown in Figure
2 together with the true parameters (red lines). We see that, although with a higher
variance, the location parameter is better estimated with the truncated data set while the
scale and shape parameters are better estimated with the full data set.
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Figure 2: Distribution of estimated parameters

2.3 Different Criteria for Comparing Models

In addition to the estimates of GEV parameters, often of interest to practitioners is the T -
year return level, defined as its 1/T -level quantile zp. Its analytical formula as a function
of the GEV parameters is recalled in Property 1.

Property 1. Given a probability p > 0, the return level zp associated with the return
period T = 1/p is defined by [3]:

zp =

{
µ− σ

ξ

[
1− {− log (1− p)}−ξ

]
,

µ− σ log {− log (1− p)} ,
for ξ 6= 0,

for ξ = 0,
(2)

where µ, σ, ξ are location, scale, and shape parameters of the GEV distribution.

A comparison between the true return levels at the reference time t0 = 70 and the
ones estimated based on the fitted 70y-SM model (one replicate) is shown in Figure 1b.

In addition to return levels, one may also be interested in knowing how close the
distribution of the real and the fitted model are. One way to handle this is to use the
Hellinger distance (Hdist) [5] to quantify the similarity between two absolutely continuous
probability distributions. The definition of Hellinger distance is given in Definition 1.

Definition 1. Given f and g, two probability density functions with respect to a reference
measure λ, the squared Hellinger distance between f and g is defined by

Hdist2 (f, g) =
1

2

ˆ (√
f(x)−

√
g(x)

)2
dλ(x). (3)
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2.4 A few experimental observations

We compare the mean of the absolute error of the return level as a function of the return
period for several values of µ1. The absolute error of the return level is defined by

ERL =
∣∣∣RL− R̂L

∣∣∣ , (4)

where RL and R̂L are the true return level and the estimated return level based on a
fitted model, respectively.

The results at the reference time t0 = 70 years are given in Figure 3a. Under the
stationary assumption, we can see that when µ1 is small, the ERL of the 30y-SM is larger
than that of the 70y-SM. As µ1 increases, the ERL of the 70y-SM at low return periods
becomes larger. In particular, when µ1 = 0.03, the ERL curve of the 70y-SM at low
return periods (T < 25) starts to tilt upwards making the two curves cross each other at
around T = 25. Therefore, the ERL of the 30y-SM is lower in the range of T < 25, but
it is still higher than the 70y-SM when T > 25. When µ1 = 0.05, almost the whole ERL
curve of the 70y-SM moves upwards, and so the ERL of the 30y-SM is smaller at almost
all levels of the return period.

Next, we discuss the results based on the Hellinger distance between true and estimated
GEV distributions at the reference time t0 = 70. We keep track of the number of times
Hdist obtained from the 30y-SM is smaller (closer to the true density) than Hdist obtained
from 70y-SM and calculate the proportion (out of 500 replications). Figure 3b shows this
proportion as a function of µ1. We can see that under the stationary assumption, the
proportion is increasing as µ1 increases and reaches 1 at µ1 = 0.03, which indicates that
the estimated density of the 30y-SM model is closer to the true density –in the Hellinger
sense– than that of the 70y-model.

A very important conclusion one can draw from Figure 3a is that at high value of
µ1 (µ1 = 0.03, 0.05) what you gain on the location parameter by truncating the data
set, you lose it on the scale and shape parameters. So, with the 30y-SM model, you get
better at estimating short-term return levels but worse at long-term ones. In other words,
longer-term return levels depend more on the distribution of the tail, for which having
a poor estimate of the location parameter is not dramatic while poorly estimating the
shape parameter has severe consequences.

Ongoing work concerns studying the case where the trend depends non-linearly on
time, for instance oscillatory trends in location standing for multi-decadal variability in
climate. Besides this, applications on series of yearly maxima from climatological and
hydrological series of measures recorded in Switzerland over more than a century are
currently in progress.
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Figure 3: ERL and Hdist of the 30y-SM and 70-SM at different values of µ1
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