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Résumé. L’imagerie de perfusion joue un rôle majeur pour tudier la microvascu-
larisation tumorale qui est perturbée par une angiogenèse anormale pendant la crois-
sance de la tumeur. Enregistrant une information dynamique liée à l’injection d’un bolus
d’agent de contraste, ce type d’imagerie permet de construire des biomarqueurs diagnos-
tic, prognostic ou de suivi dans le cadre des traitements anti-angiogéniques. Toutefois
l’imagerie de perfusion souffre d’un fort niveau de bruit et il est nécessaire d’améliorer
le rapport signal sur bruit, par exemple via la construction de régions d’intérêt (ROI)
au sein desquelles l’information dynamique est moyennée. Réalisée de façon manuelle ou
automatique avec des outils mal adaptés, ces ROI souffrent actuellement d’un manque
d’homogénéité ou d’une perte d’information dynamique. Nous proposons de remédier
à ces problèmes à travers une classification non supervisée qui préserve les dynamiques
et offre un degré d’homogénéité contrôlable. Notre méthode s’appuie sur une utilisation
de tests d’équivalence multi-résolution, qui préservent la structure dynamique, et d’un
algorithme itératif de type dendrogramme qui protège les propriétés de l’image. La con-
struction itérative s’arrête automatiquement à l’aide d’un contrôle des erreurs de type I
et II permettant ainsi de choisir le nombre de classes automatiquement.

Mots-clés. Imagerie de perfusion, test d’équivalence, classification non supervisée,
ROI, biomarqueur

Abstract. Perfusion imaging plays an important role in studying tumor microvas-
culature that undergoes disturbances from abnormal angiogenesis during tumor growth.
With the dynamic information related to the injection of a contrast agent bolus, it is pos-
sible to build biomarkers for diagnostic, prognosis or treatment monitoring when using
anti-angiogenic drugs. However, perfusion imaging suffers from high noise level, hence it
is necessary to improve the signal to noise ratio, by constructing for example regions of
interest (ROI) in which dynamic information is averaged. Acquired manually or automat-
ically with unsuitable tools, these ROIs are currently suffering from a lack of homogeneity
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or a loss of dynamical information. We propose to address these issues through an un-
supervised clustering that preserves the dynamics and provides a controllable level of
homogeneity. Our method is based on multi-resolution equivalence test, adapted to the
dynamic structure, and on a dendrogram-like iterative algorithm that takes into account
image specificities. The iterative construction is stopped automatically with the control
of Type I and Type II errors permitting an automatic choice of the number of clusters.

Keywords. Perfusion imaging, equivalence test, unsupervised clustering, ROI, biomarker

1 Introduction

In order to improve diagnosis, prognosis and treatment optimization of cancer, more ad-
vanced and comprehensive detection and monitoring techniques are required. As tumor
growth is associated with a modification of the microvascular function through abnormal
angiogenesis, clinicians are therefore keen about monitoring the microvascular function
by perfusion imaging techniques, leading to imaging biomarkers. A common perfusion
imaging technique is Dynamic Contrast Enhanced (DCE) imaging using Computed To-
mography (DCE-CT), Magnetic Resonance Imaging (DCE-MRI) or Ultrasound imaging
(DCE-US), which measures tissue enhancement signal at each voxel induced by an intra-
venous injection of a bolus of contrast agent. By analyzing the information produced in
DCE image sequence, either scalar (tissue perfusion, tissue blood volume, mean transit
time) or functional parameters (scaled survival function) describing the microvasculariza-
tion are acquired to build imaging biomarkers.

However, analysis techniques of perfusion imaging suffer from high noise level due
to either the need to control X-ray dose or low sensitivity while trying to obtain high
resolution. To reduce the noise level, either large manual regions of interests (ROI) are
used or the sequence of images are denoised individually by spatial averaging or filtering
techniques. However, both of them lose the dynamical information of temporal signal
by mixing dynamics which may not be homogeneous. Nevertheless, what we are dealing
with in DCE image sequence, after a proper registration, are assumed to be fixed objects
with changing contrast. Therefore, with this hypothesis, almost homogeneous objects are
expected, which leads us to segment homogeneous clusters from DCE image sequence.

Many works have adapted existing image segmentation methods to DCE-imaging.
Thresholding, clustering-based methods such as k-means [Nguyen et al. (2014)], fuzzy
c-means [Chen et al. (2006)] as well as support vector machine [Torheim et al. (2014)] and
artificial neural network [Szabó et al. (2004)] have been adopted in conjunction with a
dimension-reduced feature space, such as qualitative [Lavini et al. (2006)] or kinetic [Chen
et al. (2011)] parameters and sub-space produced by principal component analysis, spec-
tral embedding [Agner et al. (2013)] and wavelets techniques [Li et al. (2012)], instead of
original data space, in order to reduce the computational complexity and noise. However,
a fair amount of dynamical information suffers a loss due to this dimension reduction.
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Besides, in order to achieve the automatic selection of the number of clusters by using
an information criterion as in Tartare et al. (2014), same method has to be performed
repeatedly for each given number of clusters, which massively increases the computational
complexity specially for large target ROI with maybe over one hundred clusters.

To overcome these issues, a couple of methods have been recently developed by Rozen-
holc et al. (2010) and Mohajer et al. (2012). The latter one is a two-resolution level method
based on hierarchical clustering, using an Euclidean distance adapted to the characteris-
tics of DCE signal curves. However, due to the use of two-resolution levels, the resulting
clusters suffer from unexpected shapes, moreover the cluster homogeneity is not satisfying.
On the other hand, DynClust by Yves et al. (2010) is a two step, point-wise denoising and
clustering, method based on the growth of homogeneous regions and adaptive multiple
test. Automatic selection of the number of clusters is ensured by the user-defined test
level. The neighborhood construction during the denoising step ensures that large organs,
tumors, metastasis and vessels are well clustered. However, the denoising step is time-
consuming and the choice of the alternative hypothesis is questionable for the purpose of
comparison. The latter causes a lack of mathematical basis for this method.

We propose a new method for clustering dynamical images, relying on multiple equiva-
lence test, which takes care of local homogeneity and can also merge similar disconnected
features. The optimal number of clusters is selected automatically through a proper
control of the type I and type II errors.

2 Statistical model

We consider a DCE imaging sequence, that we will also call dynamical image, consisting
of a finite sequence of noisy images indexed by both time and space:

I = {Ix := (I x(t1), . . . , I
x(tN)), x ∈ X , t1 6 t2 6 . . . 6 tN} ,

where I x(tj) denotes the noisy enhancement at the j-th acquisition time and voxel location
x of the finite voxel grid X . We assume that the j-th observable gray level I x(tj) may be
written as

I x(tj) = ix(tj) + σεxj ,

where ix(tj) denotes the true but unobservable gray level, εxj denotes a standardized noise
and σ the noise level. We assume that the noises εxj are independent with respect to both
space location x and time index j. To help the presentation, we will assume that σ is
known and σ = 1. In practice, the knowledge of σ may be either ensured by a proper
calibration or replaced by a consistent estimation.

Our method is based on the statistical comparison, for two sets of voxels X and Y , be-
tween the two dynamics estimated by averaging: ĪX =

∑
x∈X I

x/|X|, ĪY =
∑

y∈Y I
y/|Y |.

Assuming X ∩ Y = ∅ such that

DXY = ĪX − ĪY ∼ N (dXY ,ΣN),
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where dXY =
∑

x∈X i
x/|X| −

∑
y∈Y i

y/|Y | and ΣN = (1/|X|+ 1/|Y |) IdN , the two sets

are considered indistinguishable if dXY does not deviate significantly from the zero vector.
More precisely, we aim to build a so-called “equivalence” test

H0 : dXY 6= 0 v.s. H1 : dXY = 0

and decide that X and Y are time homogeneous when H1 is true.

3 Equivalence testing

In hypotheses testing, the research or alternative hypothesis represents what the study
aims to put in evidence. The burden of proof is on the alternative in the sense that it is
established only if there is enough evidence in its favor, which in conventional (two-sided)
comparative studies, is the hypothesis of difference. In contrast, the goal of equivalence
test [Walker and Nowacki (2010)] is to demonstrate equivalence. Therefore the burden
of proof rests on equivalence. In essence, the null and alternative hypotheses in equiv-
alence test are simply those of a conventional comparative study reversed. The term
”equivalence” means that two random variables are close enough to be distinguishable.

The construction of equivalence test under Gaussian assumption can be found in
Wellek (2010). Using such equivalence test in our model, we would have to run N com-
parisons (one per coordinates) and would face a multiplicity problem. To control this
multiplicity, we follow the works of Baraud et al. (2005) and Durot and Rozenholc (2006),
and use a dyadic decomposition of the time index to project the dynamics onto sub-spaces
resulting that only Kmax := blog2Nc tests are needed to perform the comparison. For
K = 1, . . . , Kmax, we denote by ΠK the projection in RN onto the piecewise constant
vectors on the dyadic partition made of 2K (almost) regular intervals and consider the
equivalence test

HK
0 :‖ ΠK(dXY ) ‖2 6= 0 v.s. HK

1 :‖ ΠK(dXY ) ‖2= 0.

We will say that H1 is true if and only if all HK
1 are true, that is

H0 =
Kmax⋃
K=1

HK
0 v.s. H1 =

Kmax⋂
K=1

HK
1 ,

which is well known as an intersection-union test (IUT) from Berger and Hsu (1996). In
this setting the following result holds

Theorem 1 (Berger and Hsu (1996), page 6) Let RK denote a rejection region for
a test of HK

0 at level α, then the IUT with rejection region R =
⋂Kmax

K=1 RK is of level α.

Corollary 1 If p (resp. pK) is the p-value for H0 (resp. HK
0 ) then p = maxK(pK).

To formalize the construction of the K-th equivalence test, we introduce the equiva-
lence margin ∆, and compute the K-th p-value as P (χ2(2K ,∆) 6‖ ΠK(DXY ) ‖2), where
χ2(2K ,∆) denotes a ∆-shifted χ2 with 2K degrees of freedom.
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4 Dendogram-like clustering using equivalence test

A general setup of clustering problem is to produce a partition with n clusters

X = C1 ∪ . . . ∪ Cn, Cs ∩ Cs′ = ∅, 1 6 s, s′ 6 n.

Using equivalence test, we aim to build this partition to be minimal with respect to n and
to satisfy that ∀x ∈ Cs and ∀y ∈ Cs′ , H1 is true if s 6= s′ and H0 is true otherwise. The
computational complexity of this program is unfortunately O(2|X |), which is impossible
when |X | is already one hundred. Moreover, we would like to take into account local
properties of DCE image sequence such as local homogeneity.

We adopt a bottom-top dendrogram construction by building on a pseudo-dissimilarity
derived from the p-value of our equivalence test for spacial neighbors and which is infinite
for non spacial neighbors. By controlling the type I and type II errors, we compute the
equivalence margin ∆ and provide an automatic way to stop our construction, which de-
fines both the number of clusters and the partition. This local strategy can be followed by
a global one, which aims at recovering disconnected clusters with equivalent dynamics. To
this end, starting from the previous partition, we adapt the previous construction without
consideration to the neighborhood structure while computing the pseudo-dissimilarity.

The complexity of the local procedure is controlled by the spatial localization while
those of the global procedure is controlled thanks to the expected small size of the partition
obtained at the first step.
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