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Résumé. Dans le cadre de l’estimation non paramétrique d’une fonction multidimen-
sionnelle on cherche à obtenir la borne inférieure minimax. On suppose que la fonction à
estimer possède la structure ≪ multi-index ≫ dans lequel ni fonction de lien et ni vecteurs
d’indice ne sont connus. Par exemple, en régression, ce hypothèse signifie que l’espérance
de la variable réponse est défini par celle sachant uniquement une projection du vecteur
de covariables sur un sous-espace de dimension plus petite. Par conséquent, cette manière
de réduire la dimension est un compromis convenable entre les approches paramétrique
et purement non paramétrique. D’après les résultats obtenus pour les pertes ponctuelle,
sous l’hypothèse structurelle, on a un nouveau type de bornes inférieures minimax.

Mots-clés. Estimation non paramétrique, Modèle de multi-index, Borne inférieure,
Vitesse minimax.

Abstract. In the framework of multivariate function estimation one seeks lower
bounds for the minimax risk. One assumes that the function to be estimated possesses
a multi-index structure where neither the link function nor the index vectors are known.
For example, in regression this assumption means that the expectation of the response is
defined by the response given the projection of the covariate vector onto a low-dimensional
subspace. Therefore, this convenient dimension reduction approach is a compromise bet-
ween the parametric and fully nonparametric models. The obtained results show that
under pointwise losses imposing the structural constraints leads to new types of minimax
lower bounds for “standard” nonparametric models.

Keywords. Nonparametric estimation, Multi-index model, Lower bounds, Minimax
rate.

1 Introduction
The present talk adresses lower bounds for the minimax risk under structural assump-

tions on the function to be estimated. The obtained results show that imposing structural
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constraints leads to new types of minimax lower bounds for “standard” nonparametric
models.

The lower bounds for the minimax risk, apart from being a challenging mathematical
problem, serve as a benchmark for the best obtainable quality of an arbitrary estimator.
Let us briefly review the main building blocks of the problem. Let Q̂ be some estimator
of a parameter Q(θ) with θ in some parameter space Θ . Consider a risk determined by
a polynomial loss function

R(n)
r, d

(
Q̂, Q

)
=

{
E(n)

θ

[
dr

(
Q̂, Q(θ)

)]}1/r

, θ ∈ Θ, r ∈ [1,∞), (1)

where d is some semi-metric and E(n)
θ denotes the mathematical expectation with respect

to P(n)
θ , a family of probability measures generated by observations. Clearly, it is preferable

to have a uniform in θ upper bound on the risk (1), that is, to bound the maximum
risk supθ∈Θ R(n)

r, d

(
Q̂, Q

)
where Θ may be either a subset of a finite-dimensional space

(parametric setup) or an infinite-dimensional space (nonparametric setup). In the latter
case usually Θ = F , a sufficiently rich set of functions and the target of estimation is
a function θ = F ∈ F which may be, for instance, a regression function in a regression
model or a signal in the Gaussian white noise (GWN) model. (These models will be
sometimes referred to as “standard” statistical models.) In what follows we will consider
a problem of nonparametric estimation at a given point, that is, when Q(F ) = F (t) with
t in some bounded interval of Rd . The corresponding risk of some estimator F̂ (t) of
F (t) is then given by

R(n)
r, t

(
F̂ , F

)
=

(
E(n)

F |F̂ (t) − F (t)|r
)1/r

, t ∈ D ⊂ Rd.

One aims at obtaining as great as possible lower bound ψn(F) on the minimax risk usually
called lower rate of convergence or minimax lower bound,

inf
F̃

sup
F ∈F

R(n)
r, t

(
F̃ , F

)
& ψn(F), n → ∞,

where F is some class of functions. The latter inequality says that, on the class F , the
estimators of F (t) cannot converge to f(t) faster than ψn(F) .

We see that a great advantage of the described above approach is that it allows us to
judge the accuracy of arbitrary estimators. However, there are some “subjective” compo-
nents : the choice of the loss function and the functional class F . In what follows we fix
the loss function to be the pointwise semi-norm and investigate the effect of selection of
F .

The best obtainable rates for classical statistical models are well known [see, for ins-
tance, Ibragimov and Has’minskii (1981)]. Let F : Rd → R be either an unknown si-
gnal in the GWN model or a regression function. Consider Hd(β, L) , β > 0, L > 0 ,
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the isotropic Hölder class, or, more generally, the anisotropic Hölder classes Hd(β, L) ,
β = (β1, . . . , βd) , [see Definition 1]. Then (when necessary) under regularity conditions
the minimax rates are

ψn(β, L) = Ld/(2β+d)n−β/(2β+d), (2)

ψn(γ, L) = L1/(2γ+1)n−γ/(2γ+1), γ−1 =
d∑

k=1
β−1

k , (3)

for Hd(β, L) and Hd(β, L) , respectively. In the anisotropic case (3) the dimension d is
hidden in the harmonic mean.

What this story is really about. Nevertheless, being quite common, the choice of
F = H(β, L) or F = H(β, L) is rather subjective. Suppose that in a “standard” statistical
model one seeks an estimator of the value F (t) , t ∈ D , of a function F : Rd → R under
a structural constraint that there exist an unknown function f : Rm → R , m ≤ d , and
some unknown linearly independent unit vectors θk ∈ Sd−1 , k = 1, . . . ,m , such that

F (x) = f
(
θ⊤

1 x, . . . , θ
⊤
mx

)
. (4)

This model assumption is called “multi-index” and appears, for instance, in semiparame-
tric estimation and dimension reduction problems [see Stone (1985) and Hristache et al.
(2001)]. A natural question then arises : whether the rate appearing in the lower bounds
on the minimax risk for the smoothness classes of such “structured” functions [for the
precise definition see Definition 2] coincide with the rates in (2) and (3) ? In what follows,
it will be shown that the answer is negative : the lower bounds contain an additional
logarithmic factor.

2 Main results
We start this section with definitions of smoothness classes of functions.
Let Dl

jg denote the l th order partial derivative of g : Rm → R with respect to the
variable zj ; and let ⌊βk⌋ be the largest integer strictly less than βk .

Definition 1 Let β = (β1, . . . , βm) , βk > 0, k = 1, . . . ,m , and L > 0 . A function
g : Rm → R belongs to the anisotropic Hölder class Hm(β, L) if g has continuous partial
derivatives of all orders l ≤ ⌊βk⌋ , k = 1, . . . ,m , and for all k = 1, . . . ,m

∥Dl
kf∥∞ ≤ L ∀l ≤ ⌊βk⌋∣∣∣D⌊βk⌋

k g(z1, . . . , zk−1, zk + τ, zk+1 . . . , zm) −D
⌊βk⌋
k g(z1, . . . , zk, . . . , zm)

∣∣∣
≤ Lτβk−⌊βk⌋ ∀z ∈ Rm, τ ∈ R.
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Definition 2 . Let Θm = (θ1, . . . , θm) be a d×m matrix with linearly independent rows
θk ∈ Sd−1 , k = 1, . . . ,m . Define the class of (anisotropic) multi-index functions :

Fm,d(β, L) =
{
F : Rd → R

∣∣∣ F (x) = f
(
Θmx

)
, f ∈ Hm(β, L), 1 ≤ m ≤ d

}
.

For m = 1 this class consists of the single-index functions F (x) = f(θ⊤x) . The adaptive
estimation of such functions was studied in Lepski and Serdyukova (2014).

When β = (β, . . . , β) , we will write Fm,d(β, L) (isotropic case). In addition, denote
by Fanis

m,d(β, L) = Fm,d(β, L)\Fm,d(β, L) the class of multi-index functions with purely
anisotropic link functions.

GWN model : We observe a path {Yn(x), x ∈ [−1, 1]d} satisfying the stochastic
differential equation

Yn(dx) = F (x)dx+ 1√
n
W (dx), (5)

where W is a Brownian sheet, 1/
√
n , n ∈ N , is the deviation parameter and F ∈

L2([−1, 1]d) .

Regression model : The observations (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R follow

Yi = F (Xi) + εi, i = 1, . . . , n, (6)

where d ≥ 2, the noise {εi}n
i=1 are i.i.d. centered random variables and the design points

{Xi}n
i=1 are independent random vectors with common density g with respect to the

Lebesgue measure. The sequences {εi}n
i=1 and {Xi}n

i=1 are assumed to be independent.
In the both models the target of estimation is the value F (t) , t ∈ [−1/2, 1/2]d . In

the case of regression model some additional assumption about the noise and the design
should be imposed. In the case of regression model some additional assumption about the
noise and the design should be imposed.

Assumption 1 There exist constants q,Q > 0 such that, for any υ1, υ2 ∈ [−q, q],∫
R
p(y + υ1)p(y + υ2)p−1(y)dy ≤ 1 +Q

∣∣∣υ1υ2

∣∣∣.
It is easy to see that the Gaussian density N (0, σ2) , σ2 > 0 , obeys the aforementioned
assumption. In general, this assumption is fulfilled if the Fisher information corresponding
to the density p is finite and the function

∫ [
p′(y + ·)

]2
p−1(y)dy is continuous at zero.

Assumption 2 There exist constants g > 0 and ϖ > 1 such that, for all x ∈ Rd ,

g(x) ≤
(
1 + |x|ϖ2

)−1
g .

Here | · |2 is the Euclidean vector norm on Rd .
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This assumption is very weak and holds for the majority of probability distributions used
in statistical applications.

Theorem 1 Let F : Rd → R satisfying (4) be either the unknown signal in the GWN
model (5) or the regression function in (6). In the latter case it is additionally assumed
that Assumptions (1) and (2) hold. Then, for any 1 ≤ m < d , d ≥ 2 , β = (β1, . . . , βm) ,
βk > 0, k = 1, . . . ,m , L > 0 , r ≥ 1 , t ∈ [−1/2, 1/2]d , for n sufficiently large

inf
F̃

sup
F ∈Fm,d(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κL1/(2γ+1)

[
n−1 ln(n)

]γ/(2γ+1)
, γ−1 =

m∑
k=1

β−1
k ,

where the infimum is taken over all estimators and κ is a constant independent of n
and L.

Moreover, if m = d ,

inf
F̃

sup
F ∈Fanis

m,d
(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κL1/(2γ+1)

[
n−1 ln(n)

]γ/(2γ+1)
.

Remark 1 It is worth mentioning that the obtained rates of convergence agree with the
prominent Stone’s dimensionality reduction principle [see Stone (1985)], particularly, we
observe in the rate the “effective dimension” m . In the anisotropic case the dimensiona-
lity m is hidden in the harmonic mean. In the isotropic case, 1 ≤ m < d , the result of
the theorem reads as

inf
F̃

sup
F ∈Fm,d(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κLm/(2β+m)

[
n−1 ln(n)

]β/(2β+m)
.
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