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Résumé. Un plan d’expérience est étudié où des souris doivent être placées dans
des cages en respectant certaines contraintes. Trois méthodes différentes sont présentées
pour résoudre deux problèmes différents. Dans le premier, les souris sont placées dans des
cages avec la contrainte que les voisins doivent être évités. Dans le second, une nouvelle
contrainte oblige les souris à changer de côté à chaque étape de telle sorte qu’une moitié
des souris ne rencontre que l’autre moitié des souris. Une méthode est présentée pour le
premier problème et deux pour le second, dont l’une exploite les corps finis d’une manière
simple et semblable à ce qui se fait pour les carrés latins mutuellement orthogonaux.

Mots-clés. plans d’expériences, théorème du mariage, coloration d’arêtes.

Abstract. An experimental design is studied where mice should be placed into cages
following a couple of constraints. Three methods are presented for two different problems.
In the first one, mice are placed in cages with the constraint of changing cage at each
step avoiding neighbours. In the second setting, an additional constraint compels mice
to change side at each step so that one half of the mice meets only the other half. A
method is presented for the first setting and two for the second one, one of the latter
taking advantage of finite fields in a simple and very similar way to what happens when
dealing with mutually orthogonal latin squares.

Keywords. experimental design, marriage theorem, edge coloring.

1 Introduction

In neuropsychology, studying depression is an important challenging trend. Of course, to
study this kind of behaviour, animal models are usually considered with a lot of precaution
as mice are not humans. Thus experimental design is particularly important and some
propositions have arised lately Golden et al. (2011). Here, we propose two methods to
produce experimental designs that can be useful for biomedical studies in the case where
mice have to be placed in cages with particular constraints. In the first section, we present
a method to place mice in cages with a given set of constraints implying for instance that
each mouse must meet each other mouse, must change cage at each step. In the second
section, the constraints are stronger, there are two parts in each cage and mice must
swap side at each step. Then, the problem does not allow anymore all mice to meet one
another. In both cases, trying to generalize the results leads to open problems.
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2 No systematic swap setting

Given 2n mice and n cages we want to make mice meet in the following way. Each mouse
encounters each other mouse once and only once. Cages are disposed in a linear way
and contain each two parts; a left and a right side. There is a neighbourhood constraint
standing as follows, if at time t − 1 or at time t + 1 two mice share the same cage, they
cannot be neighbours at time t. Besides, we consider a refractory period r equal to 1,
meaning that a mouse can return in a cage only after a refractory period equal to 1. The
case r > 1 will not be considered so that it is an open problem to solve the experimental
design with this additionnal constraint.

We will need in the following P. Hall’s marriage theorem (van Lint, 2001) that is
recalled here:

Theorem 1. Given a graph G(V,E) and two subsets X and Y of vertices V , a necessary
and sufficient condition for there to be a complete matching from X to Y in G is that
|Γ(A)| ≥ |A| for every A ⊂ X where Γ(A) stands for the neighbours of A.

The meaning of vertices changes according to the case at hand, but whenever it is
used, the idea it to establish if there is a perfect matching between two sets of points X
and Y among which some pairs (x, y), with x ∈ X and y ∈ Y , can match and others
cannot. When a match is possible, then an edge exist between the two points of the pair.

The solution is given by the following procedure. First, we need a succession of perfect
matchings between symbols so that symbols meet once and only once. This is possible as
2n is even, indeed in that case what is needed is an edge coloring of the complete graph
K2n (see figure 1) or put it differently a symmetric latin square. In a second step, for
each time point the pairs of the perfect matching are assigned to the columns according
to the given constraints. This can be done thanks to lemma 1 if n > 2. As last step,
symbols can be permuted inside columns to satisfy the neighbourhood constraint thanks
to lemma 2

Lemma 1. It is always possible to associate a symbol pair to a column.

Proof. A way to prove it is to follow the proof of theorem 17.1 in van Lint (2001) stating
that a t× n latin rectangle can always be completed into a n× n latin square. First, we
define Bj as the set of pairs that can be chosen for column j. Each pair can occur in
n − 2 sets Bj as each pair contains two symbols, both of which have visited a different
column at time t. Besides, at time t column j has contained 2 different symbols so that
Bj contains n − 2 pairs as each of these symbols has been associated to a new symbol.
Then, if we take l sets Bi1, . . . , Bin, they contain at least l(n− 2) pairs and, as each pair
belong to only n − 2 columns, then there must be at least l different pairs in the l sets.
Consequently, Hall’s theorem 1 can be applied, so that each Bi is connected to a different
symbol pair, meaning that there is a perfect matching between the pairs and the columns
verifying the problem constraints.
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Of course, lemma 1 can lead to neighbourhood constraint violations. That’s why we
present lemma 2 to show a way to correct these violations.

Lemma 2. It is always possible to adjust a line t so that matchings in row t + 1 satisfy
the neighbourhood constraint if the edge coloring procedure described in figure 1 has been
used and if n > 2.

Proof. At this point, some notations are needed to distinguish the different column types
at a given step. They will be denoted C0, C1, C2 and C3. Columns C0 have no conflict at
all. C1 indicates that there is one conflict with the left or not exclusively with the right
column, this is the case for column CD in row t as B and C are neighbours in row t + 1.
Type C2 is for columns having a double conflict with the same column involving all sides.
In the table below, in row t, GH and IJ are of type C2 as G must avoid J , as G and J
are in the same cage in row t + 1, and H must avoid I also due to row t + 1. In the last
case, C3, there is a double conflict of another kind, then a symbol is in conflict with both
symbols of the neighbour column. This is the case for B which must avoid as well C and
D.

t− 1 C E A I H J B D G F
t A B C D E F G H I J
t + 1 H I A E G J B C D F

With these notations, row t can be described by C3C1C1C2C2. Then, conflicts are sup-
pressed through the following two steps. First, all columns of type C3 are swapped, which
means that inside each column of type C3 the left hand side and the right hand side are
exchanged. In the second step, going from one side (let’s say the left side), to the other
side, each column having a conflict with the preceding one is swapped. With the given
example, this leads to a new row t given by :

t B A C D E F H G I J

That way no conflict exists anymore. This is true as existing conflicts are suppressed
and no new is created. To show the latter, two cases need to be considered. Firstly, when
a column of type C3 is swapped, it is changed into a C0 column. Secondly, in the second
step remaining conflicts are resolved.

Let us consider first a column of type C3. Without loss of generality let us suppose
that such a column contains symbols S1S2 followed by symbols S3S4 with a double conflict
between S2 and S3 and between S2 and S4. Then, when S1 and S2 are swapped, S2 cannot
be in conflict with its preceding symbol as in that case S2 would have three conflicts which
is impossible. Besides, S1 cannot be in conflict with S3. Indeed, if there would be a conflict
between them, then S3S4 would have been of type C3 and for this reason also swapped.
So, the last thing to be checked is that no new conflict arises between S4 and S1 if both
their columns are swapped. Such a conflict would involve that in row t − 1, we would
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have had either pairs S1S4, S2S3 or pairs S1S3, S2S4. By the edge coloring procedure, it is
clear that four symbols cannot meet one another in closed group at two consecutive steps
if 2n is larger than 4.

At last, now consider columns of type C1 and C2. Each time such a column is swapped,
the conflict with the preceding column is suppressed as by definition such a column has
a single conflict with the preceding column. Besides, it cannot create a double conflict
of type C3 with the following column as this would mean that the left symbol would
have three conflicts which is impossible. Consequently, the two-steps procedure solves all
conflicts.

Now, let us give an example for n = 5 on figure 1.

9 1 6 5 7 4 8 3 0 2
8 5 9 2 1 3 0 4 6 7
2 4 8 7 0 6 1 5 9 3
7 1 3 5 4 9 2 6 8 0
9 5 1 0 2 8 3 7 4 6
3 0 9 6 5 7 4 8 1 2
6 8 3 2 4 1 5 0 9 7
2 5 7 0 8 9 6 1 3 4
9 0 5 4 6 3 7 2 8 1

Figure 1: Illustration of edge-coloring and example of a solution for n = 5. Each column
represents a different cage and each line a different experimental day.

3 Systematic swap setting

In the present setting, we keep the previous constraints and in addition mice must change
side at each time point. So that, mice can only meet half of the total population which is
divided into two equal parts. There are n mice of type L, n mice of type R and n cages.
They are so-called because L mice are initially on the left side and R mice on the right
side. At each time point, mice of type L encounter mice of type R and finally all mice of
type L have encountered all mice of type R.

We consider first the simplest case where n is a prime number. This eases much the
problem as calculations can be conducted in Fn.

Lemma 3. If n is prime, columns are chosen for symbols x1, . . . , xn of type L and symbols
y1, . . . , yn of type R according to respectively formula i + (t − 1)k and i + (t − 1)l with
|k − l| > 1 then prescribed constraints are respected.
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Proof. If n is a prime number, column choice can be obtained by the formula: i+ (t−1)k
for row t. This means that initially, at time 1, i is the column of symbol xi. Similarly,
i + (t− 1)k indicates the position of symbol yi of type R. We notice that i + (t− 1)k =
j + (t − 1)l has a unique solution, given by t = 1 + (i − j)(l − k)−1 which is possible
as we are working in Fn. Thus, each L mouse meets each R mouse once and only once.
Besides, it is also obvious that each column is visited only once as: i+ (t− 1)k = c has a
unique solution t = (c − i)k−1 + 1. Finally, the last constraint to be verified is that two
neighbours at time t cannot be in the same column at time t − 1 or at time t + 1. This
can be decomposed into two conditions, firstly x + k 6= x + 1 + l where x and x + 1 are
two neighbour columns and secondly x + k 6= x + l + 1 which is the same equation but
means this time that if at a given time two symbols share the same column x, at next
time point they cannot be in neighbour columns. Both conditions comes down finally to
|k − l| > 1 as k = l is obviously not possible.

In the general case, we proceed in a similar fashion to the method followed in the first
setting. That is, first symbols are matched and then pairs of symbols are assigned to
columns.

Lemma 4. In the general case where n is not prime, a sufficient condition for the problem
to be solved is that n > 11.

Proof. At time t = 1, no difficulty is encountered. At subsequent time points t+1, letting
aside the constraint on neighbours, a symbol of type L can meet any symbol of type R
except symbols already met, that makes n−t possibilities. Using Hall’s marriage theorem,
as in the proof of lemma 1, this can be satisfied. Afterwards, the pair can be affected to
n− 2 columns. This is again made possible by Hall’s theorem.

If now the neighbourhood constraint is considered, a difficulty arises. Indeed, a symbol
can happen to be the neighbour at time t of a symbol it meets either at time t − 1 or
at time t + 1. Fortunately, this problem can be tackled. First, let us call conflictual
two symbols that are neighbours at step t and which should meet at time t− 1 or t + 1.
Conflicts are then resolved iteratively. Let us consider the following situation occuring at
time t:

P1 P P2 Q1 Q Q2

A B C D

Here, we suppose without loss of generality that the conflict is between B and C and look
for a pair Q that could be exchanged with P so as to reduce the number of conflicts. A
permutation is only possible if the four following conditions are met, P1 and P2 should
not be in conflict with Q and Q1 and Q2 not in conflict with P . P can be in conflict with
three other column besides P2 and two columns are not possible because of the refractory
period, so n − 6 columns are left as P 6= Q. Besides, Q cannot be in conflict with P1

and P2 so 3 columns can still be discarded and on top of that 2 owing to the refractory
period. Finally, only n−11 columns are left. Therefore, if n > 11 it is possible iteratively
to suppress all conflicts.
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11 13 10 14 9 15 8 16 7 17 6 18 5 19 4 20 3 21 2 22 1 23 0 12
20 5 13 0 23 2 15 10 22 3 17 8 14 11 19 6 16 9 12 1 18 7 21 4
7 19 2 12 4 22 8 18 11 15 5 21 9 17 3 23 6 20 0 14 10 16 1 13
14 1 17 10 12 3 16 11 22 5 18 9 20 7 13 2 19 8 23 4 21 6 15 0
6 22 8 20 0 16 9 19 7 21 3 13 10 18 5 23 11 17 1 15 4 12 2 14
15 2 17 0 22 7 18 11 14 3 21 8 12 5 20 9 23 6 13 4 19 10 16 1
1 17 4 14 6 12 9 21 11 19 7 23 10 20 5 13 8 22 2 16 0 18 3 15
23 8 21 10 16 3 20 11 22 9 14 5 12 7 18 1 13 6 15 4 17 2 19 0
4 16 1 19 9 23 7 13 0 20 8 12 10 22 5 15 11 21 2 18 6 14 3 17
20 1 16 5 18 3 15 6 22 11 14 7 12 9 19 2 23 10 17 4 13 8 21 0
8 14 10 12 6 16 11 23 4 18 1 21 7 15 5 17 9 13 2 20 0 22 3 19
13 10 14 9 12 11 19 4 15 8 17 6 21 2 16 7 23 0 18 5 20 3 22 1

Figure 2: Example of a solution for n = 12 in the second setting. Again, each column
represents a different cage and each line a different experimental day.

This method has been applied for n = 12 on figure 2.

4 Conclusion

Even if the proposed solutions are already useful for biologists, some extensions are needed.
Indeed in both settings, only a refractory period r of length 1 has been considered, this
should be generalized to prevent mice from going too often in the same cage and we
presume that both problems can be solved systematically for higher values of r. Another
extension of this work, would be to prevent mice from seeing each other twice consecu-
tively.
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